

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5509631/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structurally ordered highâ€entropy intermetallic nanoparticles with enhanced C–C bond cleavage for ethanol oxidation. SmartMat, 2023, 4, .	6.4	23
2	FeP Modulated Adsorption with Hydrogen and Phosphate Species for Hydrogen Oxidation in Highâ€Temperature Polymer Electrolyte Membrane Fuel Cells. Advanced Functional Materials, 2022, 32, 2106758.	7.8	9
3	Dopingâ€Modulated Strain Enhancing the Phosphate Tolerance on PtFe Alloys for Highâ€Temperature Proton Exchange Membrane Fuel Cells. Advanced Functional Materials, 2022, 32, .	7.8	45
4	Fluorination-enabled interface of PtNi electrocatalysts for high-performance high-temperature proton exchange membrane fuel cells. Science China Materials, 2022, 65, 904-912.	3.5	11
5	Transforming Electrocatalytic Biomass Upgrading and Hydrogen Production from Electricity Input to Electricity Output. Angewandte Chemie, 2022, 134, .	1.6	17
6	Transforming Electrocatalytic Biomass Upgrading and Hydrogen Production from Electricity Input to Electricity Output. Angewandte Chemie - International Edition, 2022, 61, e202115636.	7.2	50
7	Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nature Catalysis, 2022, 5, 66-73.	16.1	276
8	Neuron-inspired design of hierarchically porous carbon networks embedded with single-iron sites for efficient oxygen reduction. Science China Chemistry, 2022, 65, 1445-1452.	4.2	17
9	Unveiling the Electrooxidation of Urea: Intramolecular Coupling of the Nâ^'N Bond. Angewandte Chemie, 2021, 133, 7373-7383.	1.6	24
10	Unveiling the Electrooxidation of Urea: Intramolecular Coupling of the Nâ^'N Bond. Angewandte Chemie - International Edition, 2021, 60, 7297-7307.	7.2	204
11	Tailoring lattice strain in ultra-fine high-entropy alloys for active and stable methanol oxidation. Science China Materials, 2021, 64, 2454-2466.	3.5	43
12	Defectâ€Rich Highâ€Entropy Oxide Nanosheets for Efficient 5â€Hydroxymethylfurfural Electrooxidation. Angewandte Chemie, 2021, 133, 20415-20420.	1.6	29
13	Defectâ€Rich Highâ€Entropy Oxide Nanosheets for Efficient 5â€Hydroxymethylfurfural Electrooxidation. Angewandte Chemie - International Edition, 2021, 60, 20253-20258.	7.2	184
14	Construction of Nickelâ€Based Dual Heterointerfaces towards Accelerated Alkaline Hydrogen Evolution via Boosting Multi‣tep Elementary Reaction. Advanced Functional Materials, 2021, 31, 2104827.	7.8	42
15	Coupling Glucoseâ€Assisted Cu(I)/Cu(II) Redox with Electrochemical Hydrogen Production. Advanced Materials, 2021, 33, e2104791.	11.1	126
16	Defect Engineering on CeO ₂ â€Based Catalysts for Heterogeneous Catalytic Applications. Small Structures, 2021, 2, 2100058.	6.9	94
17	Advanced Cathode Electrocatalysts for Fuel Cells: Understanding, Construction, and Application of Carbon-Based and Platinum-Based Nanomaterials. , 2021, 3, 1610-1634.		26
18	Silica-facilitated proton transfer for high-temperature proton-exchange membrane fuel cells. Science China Chemistry, 2021, 64, 2203-2211.	4.2	16

LI ΤΑΟ

#	Article	IF	CITATIONS
19	Charge Transfer Modulated Activity of Carbonâ€Based Electrocatalysts. Advanced Energy Materials, 2020, 10, 1901227.	10.2	156
20	Defect Chemistry on Electrode Materials for Electrochemical Energy Storage and Conversion. ChemNanoMat, 2020, 6, 1589-1600.	1.5	15
21	Atomically Dispersed Fe on Nanosheet-linked, Defect-rich, Highly N-Doped 3D Porous Carbon for Efficient Oxygen Reduction. Chemical Research in Chinese Universities, 2020, 36, 453-458.	1.3	12
22	<i>Operando</i> Identification of the Dynamic Behavior of Oxygen Vacancy-Rich Co ₃ O ₄ for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2020, 142, 12087-12095.	6.6	736
23	Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nature Chemistry, 2020, 12, 717-724.	6.6	485
24	Defect Engineering for Fuelâ€Cell Electrocatalysts. Advanced Materials, 2020, 32, e1907879.	11.1	338
25	Advanced Exfoliation Strategies for Layered Double Hydroxides and Applications in Energy Conversion and Storage. Advanced Functional Materials, 2020, 30, 1909832.	7.8	94
26	Defect repair of tin selenide photocathode <i>via in situ</i> selenization: enhanced photoelectrochemical performance and environmental stability. Journal of Materials Chemistry A, 2020, 8, 5342-5349.	5.2	8
27	Defect Engineering on Electrode Materials for Rechargeable Batteries. Advanced Materials, 2020, 32, e1905923.	11.1	543
28	In Situ Exfoliation and Pt Deposition of Antimonene for Formic Acid Oxidation via a Predominant Dehydrogenation Pathway. Research, 2020, 2020, 5487237.	2.8	10
29	Electrochemical Oxidation of 5â€Hydroxymethylfurfural on Nickel Nitride/Carbon Nanosheets: Reaction Pathway Determined by In Situ Sum Frequency Generation Vibrational Spectroscopy. Angewandte Chemie, 2019, 131, 16042-16050.	1.6	100
30	Electrochemical Oxidation of 5â€Hydroxymethylfurfural on Nickel Nitride/Carbon Nanosheets: Reaction Pathway Determined by In Situ Sum Frequency Generation Vibrational Spectroscopy. Angewandte Chemie - International Edition, 2019, 58, 15895-15903.	7.2	309
31	Rational design of three-phase interfaces for electrocatalysis. Nano Research, 2019, 12, 2055-2066.	5.8	135
32	Low-temperature plasma technology for electrocatalysis. Chinese Chemical Letters, 2019, 30, 826-838.	4.8	57
33	In-situ evolution of active layers on commercial stainless steel for stable water splitting. Applied Catalysis B: Environmental, 2019, 248, 277-285.	10.8	99
34	Chemically activated MoS2 for efficient hydrogen production. Nano Energy, 2019, 57, 535-541.	8.2	95
35	Defectâ€Based Singleâ€Atom Electrocatalysts. Small Methods, 2019, 3, 1800406.	4.6	139
36	Bridging the Surface Charge and Catalytic Activity of a Defective Carbon Electrocatalyst. Angewandte Chemie - International Edition, 2019, 58, 1019-1024.	7.2	224

LI TAO

#	Article	IF	CITATIONS
37	Efficient Metalâ€Free Electrocatalysts from Nâ€Doped Carbon Nanomaterials: Monoâ€Doping and Coâ€Doping. Advanced Materials, 2019, 31, e1805121.	11.1	329
38	Bridging the Surface Charge and Catalytic Activity of a Defective Carbon Electrocatalyst. Angewandte Chemie, 2019, 131, 1031-1036.	1.6	41
39	Recent Advances on Nonâ€precious Metal Porous Carbonâ€based Electrocatalysts for Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 1775-1785.	1.7	146
40	3D Carbon Electrocatalysts In Situ Constructed by Defectâ€Rich Nanosheets and Polyhedrons from NaClâ€Sealed Zeolitic Imidazolate Frameworks. Advanced Functional Materials, 2018, 28, 1705356.	7.8	233
41	Plasmaâ€Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy. Advanced Materials, 2018, 30, e1705850.	11.1	476
42	One-step, room temperature generation of porous and amorphous cobalt hydroxysulfides from layered double hydroxides for superior oxygen evolution reactions. Journal of Materials Chemistry A, 2018, 6, 24311-24316.	5.2	88
43	Enriched nucleation sites for Pt deposition on ultrathin WO ₃ nanosheets with unique interactions for methanol oxidation. Journal of Materials Chemistry A, 2018, 6, 23028-23033.	5.2	60
44	Interface engineering of Pt and CeO2 nanorods with unique interaction for methanol oxidation. Nano Energy, 2018, 53, 604-612.	8.2	197
45	Defectâ€Enhanced Charge Separation and Transfer within Protection Layer/Semiconductor Structure of Photoanodes. Advanced Materials, 2018, 30, e1801773.	11.1	81
46	Ultrafine nano-sulfur particles anchored on in situ exfoliated graphene for lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 9412-9417.	5.2	80
47	Creating coordinatively unsaturated metal sites in metal-organic-frameworks as efficient electrocatalysts for the oxygen evolution reaction: Insights into the active centers. Nano Energy, 2017, 41, 417-425.	8.2	386
48	In situ growth of cobalt@cobalt-borate core–shell nanosheets as highly-efficient electrocatalysts for oxygen evolution reaction in alkaline/neutral medium. Nanoscale, 2017, 9, 16059-16065.	2.8	64
49	In situ evolution of highly dispersed amorphous CoO _x clusters for oxygen evolution reaction. Nanoscale, 2017, 9, 11969-11975.	2.8	138
50	Atomic‣cale CoO <i>_x</i> Species in Metal–Organic Frameworks for Oxygen Evolution Reaction. Advanced Functional Materials, 2017, 27, 1702546.	7.8	327
51	Sandwiched Thinâ€Film Anode of Chemically Bonded Black Phosphorus/Graphene Hybrid for Lithiumâ€ŀon Battery. Small, 2017, 13, 1700758.	5.2	145
52	In situ confined synthesis of molybdenum oxide decorated nickel–iron alloy nanosheets from MoO ₄ ^{2â^'} intercalated layered double hydroxides for the oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 87-91.	5.2	157
53	Bridging Covalently Functionalized Black Phosphorus on Graphene for High-Performance Sodium-Ion Battery. ACS Applied Materials & Interfaces, 2017, 9, 36849-36856.	4.0	129
54	Sulfur-Doped Fe/N/C Nanosheets as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2016, 8, 19379-19385.	4.0	172

LI TAO

#	Article	IF	CITATIONS
55	Cobalt nanoparticle-embedded carbon nanotube/porous carbon hybrid derived from MOF-encapsulated Co ₃ O ₄ for oxygen electrocatalysis. Chemical Communications, 2016, 52, 9727-9730.	2.2	291
56	Nonporous MOF-derived dopant-free mesoporous carbon as an efficient metal-free electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 9370-9374.	5.2	85
57	Electropolymerized supermolecule derived N, P co-doped carbon nanofiber networks as a highly efficient metal-free electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 13726-13730.	5.2	131
58	Etched and doped Co ₉ S ₈ /graphene hybrid for oxygen electrocatalysis. Energy and Environmental Science, 2016, 9, 1320-1326.	15.6	774
59	Directional coalescence growth of ultralong Au ₉₃ Pt ₇ alloy nanowires and their superior electrocatalytic performance in ethanol oxidation. Chemical Communications, 2016, 52, 5164-5166.	2.2	26
60	Carbon-coated MoS ₂ nanosheets as highly efficient electrocatalysts for the hydrogen evolution reaction. Nanotechnology, 2016, 27, 045402.	1.3	32
61	Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chemical Communications, 2016, 52, 2764-2767.	2.2	547
62	One-pot synthesis of nitrogen and sulfur co-doped graphene supported MoS 2 as high performance anode materials for lithium-ion batteries. Electrochimica Acta, 2015, 177, 298-303.	2.6	47
63	Platinum Nanoparticles Supported on Nitrobenzene-Functionalized Multiwalled Carbon Nanotube as Efficient Electrocatalysts for Methanol Oxidation Reaction. Electrochimica Acta, 2015, 157, 46-53.	2.6	28
64	N-, P- and S-tridoped graphene as metal-free electrocatalyst for oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2015, 753, 21-27.	1.9	67
65	Plasma-engineered MoS ₂ thin-film as an efficient electrocatalyst for hydrogen evolution reaction. Chemical Communications, 2015, 51, 7470-7473.	2.2	263
66	Sulfurâ€Doped Graphene Derived from Cycled Lithium–Sulfur Batteries as a Metalâ€Free Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2015, 54, 1888-1892.	7.2	328
67	Molecular doping of graphene as metal-free electrocatalyst for oxygen reduction reaction. Chemical Communications, 2014, 50, 10672.	2.2	78
68	One-pot synthesis of nitrogen and sulfur co-doped graphene as efficient metal-free electrocatalysts for the oxygen reduction reaction. Chemical Communications, 2014, 50, 4839-4842.	2.2	302