
James A Fraser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5508780/publications.pdf

Version: 2024-02-01

IAMES & EDASED

#	Article	IF	CITATIONS
1	How does flecainide impact RyR2 channel function?. Journal of General Physiology, 2022, 154, .	0.9	11
2	Prediction of Paroxysmal Atrial Fibrillation From Complexity Analysis of the Sinus Rhythm ECG: A Retrospective Case/Control Pilot Study. Frontiers in Physiology, 2021, 12, 570705.	1.3	3
3	Flecainide Paradoxically Activates Cardiac Ryanodine Receptor Channels under Low Activity Conditions: A Potential Pro-Arrhythmic Action. Cells, 2021, 10, 2101.	1.8	10
4	The complexity of clinically-normal sinus-rhythm ECGs is decreased in equine athletes with a diagnosis of paroxysmal atrial fibrillation. Scientific Reports, 2020, 10, 6822.	1.6	10
5	Ion channel gating in cardiac ryanodine receptors from the arrhythmic RyR2-P2328S mouse. Journal of Cell Science, 2019, 132, .	1.2	21
6	The application of Lempel-Ziv and Titchener complexity analysis for equine telemetric electrocardiographic recordings. Scientific Reports, 2019, 9, 2619.	1.6	6
7	On the topic of mysteries of the action potential. , 2019, , 6-8.		Ο
8	Calciumâ€dependent Nedd4â€2 upregulation mediates degradation of the cardiac sodium channel Nav1.5: implications for heart failure. Acta Physiologica, 2017, 221, 44-58.	1.8	37
9	Proâ€arrhythmic atrial phenotypes in incrementally paced murine <i>Pgc1β</i> ^{â^'/â^'} hearts: effects of age. Experimental Physiology, 2017, 102, 1619-1634.	0.9	13
10	The RyR2-P2328S mutation downregulates Nav1.5 producing arrhythmic substrate in murine ventricles. Pflugers Archiv European Journal of Physiology, 2016, 468, 655-665.	1.3	31
11	Flecainide exerts paradoxical effects on sodium currents and atrial arrhythmia in murine <i> <scp>R</scp> yR2â€P2328S </i> hearts. Acta Physiologica, 2015, 214, 361-375.	1.8	29
12	Measurement and interpretation of electrocardiographic QT intervals in murine hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1553-H1557.	1.5	23
13	Functional consequences of NKCC2 splice isoforms: insights from a <i>Xenopus</i> oocyte model. American Journal of Physiology - Renal Physiology, 2014, 306, F710-F720.	1.3	5
14	The determinants of transverse tubular volume in resting skeletal muscle. Journal of Physiology, 2014, 592, 5477-5492.	1.3	3
15	Arrhythmic substrate, slowed propagation and increased dispersion in conduction direction in the right ventricular outflow tract of murine Scn5a+/ â^ hearts. Acta Physiologica, 2014, 211, 559-573.	1.8	21
16	Mkk4 Is a Negative Regulator of the Transforming Growth Factor Beta 1 Signaling Associated With Atrial Remodeling and Arrhythmogenesis With Age. Journal of the American Heart Association, 2014, 3, e000340.	1.6	45
17	The SCN5A Mutation A1180V is Associated With Electrocardiographic Features of LQT3. Pediatric Cardiology, 2014, 35, 295-300.	0.6	4
18	Extracellular magnesium and calcium reduce myotonia in ClC-1 inhibited rat muscle. Neuromuscular Disorders, 2013, 23, 489-502.	0.3	22

#	Article	IF	CITATIONS
19	Atrial arrhythmia, triggering events and conduction abnormalities in isolated murine <i><scp>R</scp>y<scp>R</scp>2â€<scp>P</scp>2328<scp>S</scp></i> hearts. Acta Physiologica, 2013, 207, 308-323.	1.8	49
20	Conduction Slowing Contributes to Spontaneous Ventricular Arrhythmias in Intrinsically Active Murine <i>RyR2â€₽2328S</i> Hearts. Journal of Cardiovascular Electrophysiology, 2013, 24, 210-218.	0.8	43
21	Loss of Nav1.5 expression and function in murine atria containing the RyR2-P2328S gain-of-function mutation. Cardiovascular Research, 2013, 99, 751-759.	1.8	47
22	Determinants of myocardial conduction velocity: implications for arrhythmogenesis. Frontiers in Physiology, 2013, 4, 154.	1.3	155
23	Altered sinoatrial node function and intra-atrial conduction in murine gain-of-function <i>Scn5a</i> +/ΔKPQ hearts suggest an overlap syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1510-H1523.	1.5	26
24	The Relationship Between Conduction Velocity and Atrial Arrhythmogenicity under Conditions of Altered Ca2+ Homeostasis in RyR2-P2328S Murine Hearts. Biophysical Journal, 2012, 102, 671a.	0.2	0
25	Acute atrial arrhythmogenicity and altered Ca2+ homeostasis in murine RyR2-P2328S hearts. Cardiovascular Research, 2011, 89, 794-804.	1.8	39
26	Dimethyl sulphoxide addition or withdrawal causes biphasic volume changes and its withdrawal causes tâ€system vacuolation in skeletal muscle. Journal of Physiology, 2011, 589, 5555-5556.	1.3	4
27	Reciprocal dihydropyridine and ryanodine receptor interactions in skeletal muscle activation. Journal of Muscle Research and Cell Motility, 2011, 32, 171-202.	0.9	122
28	An analysis of the relationships between subthreshold electrical properties and excitability in skeletal muscle. Journal of General Physiology, 2011, 138, 73-93.	0.9	23
29	Relationships between resting conductances, excitability, and t-system ionic homeostasis in skeletal muscle. Journal of General Physiology, 2011, 138, 95-116.	0.9	59
30	Acute atrial arrhythmogenesis in murine hearts following enhanced extracellular Ca ²⁺ entry depends on intracellular Ca ²⁺ stores. Acta Physiologica, 2010, 198, 143-158.	1.8	12
31	Control of Cell Volume in Skeletal Muscle. Biological Reviews, 2009, 84, 143-159.	4.7	41
32	Extracellular Charge Adsorption Influences Intracellular Electrochemical Homeostasis in Amphibian Skeletal Muscle. Biophysical Journal, 2008, 94, 4549-4560.	0.2	6
33	Translational imaging studies of cortical spreading depression in experimental models for migraine aura. Expert Review of Neurotherapeutics, 2008, 8, 759-768.	1.4	3
34	Reply from James A. Fraser, Juliet A. Usher-Smith and Christopher LH. Huang. Journal of Physiology, 2007, 582, 467-470.	1.3	0
35	Arrhythmogenic mechanisms in the isolated perfused hypokalaemic murine heart. Acta Physiologica, 2007, 189, 33-46.	1.8	64
36	Quantitative techniques for steady-state calculation and dynamic integrated modelling of membrane potential and intracellular ion concentrations. Progress in Biophysics and Molecular Biology, 2007, 94, 336-372.	1.4	51

JAMES A FRASER

#	Article	IF	CITATIONS
37	Similarities and Contrasts in Ryanodine Receptor Localization and Function in Osteoclasts and Striated Muscle Cells. Annals of the New York Academy of Sciences, 2007, 1116, 255-270.	1.8	7
38	Alterations in triad ultrastructure following repetitive stimulation and intracellular changes associated with exercise in amphibian skeletal muscle. Journal of Muscle Research and Cell Motility, 2007, 28, 19-28.	0.9	8
39	The contribution of refractoriness to arrhythmic substrate in hypokalemic Langendorff-perfused murine hearts. Pflugers Archiv European Journal of Physiology, 2007, 454, 209-222.	1.3	48
40	A quantitative analysis of the effect of cycle length on arrhythmogenicity in hypokalaemic Langendorff-perfused murine hearts. Pflugers Archiv European Journal of Physiology, 2007, 454, 925-936.	1.3	15
41	Acidification protects skeletal muscle volume during anaerobic exercise. , 2007, , 15-16.		0
42	The influence of intracellular lactate and H+on cell volume in amphibian skeletal muscle. Journal of Physiology, 2006, 573, 799-818.	1.3	22
43	Membrane potentials in Rana temporaria muscle fibres in strongly hypertonic solutions. Journal of Muscle Research and Cell Motility, 2006, 27, 591-606.	0.9	4
44	Effect of repetitive stimulation on cell volume and its relationship to membrane potential in amphibian skeletal muscle. Pflugers Archiv European Journal of Physiology, 2006, 452, 231-239.	1.3	13
45	Alterations in calcium homeostasis reduce membrane excitability in amphibian skeletal muscle. Pflugers Archiv European Journal of Physiology, 2006, 453, 211-221.	1.3	16
46	The effect of intracellular acidification on the relationship between cell volume and membrane potential in amphibian skeletal muscle. Journal of Physiology, 2005, 563, 745-764.	1.3	35
47	Slow volume transients in amphibian skeletal muscle fibres studied in hypotonic solutions. Journal of Physiology, 2005, 564, 51-63.	1.3	16
48	Membrane potential stabilization in amphibian skeletal muscle fibres in hypertonic solutions. Journal of Physiology, 2004, 555, 423-438.	1.3	31
49	A quantitative analysis of cell volume and resting potential determination and regulation in excitable cells. Journal of Physiology, 2004, 559, 459-478.	1.3	75
50	Detubulation experiments localise delayed rectifier currents to the surface membrane of amphibian skeletal muscle fibres. Journal of Muscle Research and Cell Motility, 2004, 25, 389-395.	0.9	2
51	Detubulation abolishes membrane potential stabilization in amphibian skeletal muscle. Journal of Muscle Research and Cell Motility, 2004, 25, 379-387.	0.9	5
52	The effect of extracellular tonicity on the anatomy of triad complexes in amphibian skeletal muscle. Journal of Muscle Research and Cell Motility, 2003, 24, 407-415.	0.9	24
53	OSMOTIC PROCESSES IN VACUOLATION AND DETUBULATION OF SKELETAL MUSCLE. Cell Biology International, 2002, 26, 905-910.	1.4	2
54	Separation of detubulation and vacuolation phenomena in amphibian skeletal muscle. Journal of Muscle Research and Cell Motility, 2002, 23, 327-333.	0.9	2

#	Article	IF	CITATIONS
55	The tubular vacuolation process in amphibian skeletal muscle. Journal of Muscle Research and Cell Motility, 1998, 19, 613-629.	0.9	31