James A Fraser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5508780/publications.pdf

Version: 2024-02-01

55 papers	1,394 citations	304368 22 h-index	36 g-index
55	55	55	1381 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Determinants of myocardial conduction velocity: implications for arrhythmogenesis. Frontiers in Physiology, 2013, 4, 154.	1.3	155
2	Reciprocal dihydropyridine and ryanodine receptor interactions in skeletal muscle activation. Journal of Muscle Research and Cell Motility, 2011, 32, 171-202.	0.9	122
3	A quantitative analysis of cell volume and resting potential determination and regulation in excitable cells. Journal of Physiology, 2004, 559, 459-478.	1.3	75
4	Arrhythmogenic mechanisms in the isolated perfused hypokalaemic murine heart. Acta Physiologica, 2007, 189, 33-46.	1.8	64
5	Relationships between resting conductances, excitability, and t-system ionic homeostasis in skeletal muscle. Journal of General Physiology, 2011, 138, 95-116.	0.9	59
6	Quantitative techniques for steady-state calculation and dynamic integrated modelling of membrane potential and intracellular ion concentrations. Progress in Biophysics and Molecular Biology, 2007, 94, 336-372.	1.4	51
7	Atrial arrhythmia, triggering events and conduction abnormalities in isolated murine <i><scp>R</scp>y<scp>R</scp>2â€<scp>P</scp>2328<scp>S</scp></i> hearts. Acta Physiologica, 2013, 207, 308-323.	1.8	49
8	The contribution of refractoriness to arrhythmic substrate in hypokalemic Langendorff-perfused murine hearts. Pflugers Archiv European Journal of Physiology, 2007, 454, 209-222.	1.3	48
9	Loss of Nav1.5 expression and function in murine atria containing the RyR2-P2328S gain-of-function mutation. Cardiovascular Research, 2013, 99, 751-759.	1.8	47
10	Mkk4 Is a Negative Regulator of the Transforming Growth Factor Beta 1 Signaling Associated With Atrial Remodeling and Arrhythmogenesis With Age. Journal of the American Heart Association, 2014, 3, e000340.	1.6	45
11	Conduction Slowing Contributes to Spontaneous Ventricular Arrhythmias in Intrinsically Active Murine <i>RyR2â€P2328S</i> Hearts. Journal of Cardiovascular Electrophysiology, 2013, 24, 210-218.	0.8	43
12	Control of Cell Volume in Skeletal Muscle. Biological Reviews, 2009, 84, 143-159.	4.7	41
13	Acute atrial arrhythmogenicity and altered Ca2+ homeostasis in murine RyR2-P2328S hearts. Cardiovascular Research, 2011, 89, 794-804.	1.8	39
14	Calciumâ€dependent Nedd4â€2 upregulation mediates degradation of the cardiac sodium channel Nav1.5: implications for heart failure. Acta Physiologica, 2017, 221, 44-58.	1.8	37
15	The effect of intracellular acidification on the relationship between cell volume and membrane potential in amphibian skeletal muscle. Journal of Physiology, 2005, 563, 745-764.	1.3	35
16	The tubular vacuolation process in amphibian skeletal muscle. Journal of Muscle Research and Cell Motility, 1998, 19, 613-629.	0.9	31
17	Membrane potential stabilization in amphibian skeletal muscle fibres in hypertonic solutions. Journal of Physiology, 2004, 555, 423-438.	1.3	31
18	The RyR2-P2328S mutation downregulates Nav1.5 producing arrhythmic substrate in murine ventricles. Pflugers Archiv European Journal of Physiology, 2016, 468, 655-665.	1.3	31

#	Article	IF	CITATIONS
19	Flecainide exerts paradoxical effects on sodium currents and atrial arrhythmia in murine ⟨i⟩ ⟨scp⟩R⟨/scp⟩ yR2â€P2328S ⟨/i⟩ hearts. Acta Physiologica, 2015, 214, 361-375.	1.8	29
20	Altered sinoatrial node function and intra-atrial conduction in murine gain-of-function $\langle i \rangle Scn5a \langle i \rangle + \hat{l}^{"}$ KPQ hearts suggest an overlap syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1510-H1523.	1.5	26
21	The effect of extracellular tonicity on the anatomy of triad complexes in amphibian skeletal muscle. Journal of Muscle Research and Cell Motility, 2003, 24, 407-415.	0.9	24
22	An analysis of the relationships between subthreshold electrical properties and excitability in skeletal muscle. Journal of General Physiology, 2011, 138, 73-93.	0.9	23
23	Measurement and interpretation of electrocardiographic QT intervals in murine hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1553-H1557.	1.5	23
24	The influence of intracellular lactate and H+on cell volume in amphibian skeletal muscle. Journal of Physiology, 2006, 573, 799-818.	1.3	22
25	Extracellular magnesium and calcium reduce myotonia in ClC-1 inhibited rat muscle. Neuromuscular Disorders, 2013, 23, 489-502.	0.3	22
26	Arrhythmic substrate, slowed propagation and increased dispersion in conduction direction in the right ventricular outflow tract of murine Scn5a+/ \hat{a}^{-2} hearts. Acta Physiologica, 2014, 211, 559-573.	1.8	21
27	lon channel gating in cardiac ryanodine receptors from the arrhythmic RyR2-P2328S mouse. Journal of Cell Science, 2019, 132, .	1.2	21
28	Slow volume transients in amphibian skeletal muscle fibres studied in hypotonic solutions. Journal of Physiology, 2005, 564, 51-63.	1.3	16
29	Alterations in calcium homeostasis reduce membrane excitability in amphibian skeletal muscle. Pflugers Archiv European Journal of Physiology, 2006, 453, 211-221.	1.3	16
30	A quantitative analysis of the effect of cycle length on arrhythmogenicity in hypokalaemic Langendorff-perfused murine hearts. Pflugers Archiv European Journal of Physiology, 2007, 454, 925-936.	1.3	15
31	Effect of repetitive stimulation on cell volume and its relationship to membrane potential in amphibian skeletal muscle. Pflugers Archiv European Journal of Physiology, 2006, 452, 231-239.	1.3	13
32	Proâ€arrhythmic atrial phenotypes in incrementally paced murine <i>Pgc1β</i> ^{â²'/â°'} hearts: effects of age. Experimental Physiology, 2017, 102, 1619-1634.	0.9	13
33	Acute atrial arrhythmogenesis in murine hearts following enhanced extracellular Ca ²⁺ entry depends on intracellular Ca ²⁺ stores. Acta Physiologica, 2010, 198, 143-158.	1.8	12
34	How does flecainide impact RyR2 channel function?. Journal of General Physiology, 2022, 154, .	0.9	11
35	The complexity of clinically-normal sinus-rhythm ECGs is decreased in equine athletes with a diagnosis of paroxysmal atrial fibrillation. Scientific Reports, 2020, 10, 6822.	1.6	10
36	Flecainide Paradoxically Activates Cardiac Ryanodine Receptor Channels under Low Activity Conditions: A Potential Pro-Arrhythmic Action. Cells, 2021, 10, 2101.	1.8	10

#	Article	IF	CITATIONS
37	Alterations in triad ultrastructure following repetitive stimulation and intracellular changes associated with exercise in amphibian skeletal muscle. Journal of Muscle Research and Cell Motility, 2007, 28, 19-28.	0.9	8
38	Similarities and Contrasts in Ryanodine Receptor Localization and Function in Osteoclasts and Striated Muscle Cells. Annals of the New York Academy of Sciences, 2007, 1116, 255-270.	1.8	7
39	Extracellular Charge Adsorption Influences Intracellular Electrochemical Homeostasis in Amphibian Skeletal Muscle. Biophysical Journal, 2008, 94, 4549-4560.	0.2	6
40	The application of Lempel-Ziv and Titchener complexity analysis for equine telemetric electrocardiographic recordings. Scientific Reports, 2019, 9, 2619.	1.6	6
41	Detubulation abolishes membrane potential stabilization in amphibian skeletal muscle. Journal of Muscle Research and Cell Motility, 2004, 25, 379-387.	0.9	5
42	Functional consequences of NKCC2 splice isoforms: insights from a <i>Xenopus</i> oocyte model. American Journal of Physiology - Renal Physiology, 2014, 306, F710-F720.	1.3	5
43	Membrane potentials in Rana temporaria muscle fibres in strongly hypertonic solutions. Journal of Muscle Research and Cell Motility, 2006, 27, 591-606.	0.9	4
44	Dimethyl sulphoxide addition or withdrawal causes biphasic volume changes and its withdrawal causes tâ€system vacuolation in skeletal muscle. Journal of Physiology, 2011, 589, 5555-5556.	1.3	4
45	The SCN5A Mutation A1180V is Associated With Electrocardiographic Features of LQT3. Pediatric Cardiology, 2014, 35, 295-300.	0.6	4
46	Translational imaging studies of cortical spreading depression in experimental models for migraine aura. Expert Review of Neurotherapeutics, 2008, 8, 759-768.	1.4	3
47	The determinants of transverse tubular volume in resting skeletal muscle. Journal of Physiology, 2014, 592, 5477-5492.	1.3	3
48	Prediction of Paroxysmal Atrial Fibrillation From Complexity Analysis of the Sinus Rhythm ECG: A Retrospective Case/Control Pilot Study. Frontiers in Physiology, 2021, 12, 570705.	1.3	3
49	OSMOTIC PROCESSES IN VACUOLATION AND DETUBULATION OF SKELETAL MUSCLE. Cell Biology International, 2002, 26, 905-910.	1.4	2
50	Separation of detubulation and vacuolation phenomena in amphibian skeletal muscle. Journal of Muscle Research and Cell Motility, 2002, 23, 327-333.	0.9	2
51	Detubulation experiments localise delayed rectifier currents to the surface membrane of amphibian skeletal muscle fibres. Journal of Muscle Research and Cell Motility, 2004, 25, 389-395.	0.9	2
52	Reply from James A. Fraser, Juliet A. Usher-Smith and Christopher LH. Huang. Journal of Physiology, 2007, 582, 467-470.	1.3	0
53	The Relationship Between Conduction Velocity and Atrial Arrhythmogenicity under Conditions of Altered Ca2+ Homeostasis in RyR2-P2328S Murine Hearts. Biophysical Journal, 2012, 102, 671a.	0.2	0
54	Acidification protects skeletal muscle volume during anaerobic exercise., 2007,, 15-16.		O

ARTICLE IF CITATIONS

55 On the topic of mysteries of the action potential., 2019,, 6-8.