
Chia-En A Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5508621/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling structural interconversion in Alzheimers' amyloid beta peptide with classical and intrinsically disordered protein force fields. Journal of Biomolecular Structure and Dynamics, 2022, 40, 10005-10022.	2.0	2
2	Discovery of antimicrobial agent targeting tryptophan synthase. Protein Science, 2022, 31, 432-442.	3.1	10
3	Ritonavir and xk263 Binding-Unbinding with HIV-1 Protease: Pathways, Energy and Comparison. Life, 2022, 12, 116.	1.1	4
4	Imaging active site chemistry and protonation states: NMR crystallography of the tryptophan synthase α-aminoacrylate intermediate. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	18
5	An Integrated Pharmacological, Structural, and Genetic Analysis of Extracellular Versus Intracellular ROS Production in Neutrophils. Journal of Molecular Biology, 2022, 434, 167533.	2.0	2
6	GeomBD3: Brownian Dynamics Simulation Software for Biological and Engineered Systems. Journal of Chemical Information and Modeling, 2022, 62, 2257-2263.	2.5	1
7	Structure and noncanonical Cdk8 activation mechanism within an Argonaute-containing Mediator kinase module. Science Advances, 2021, 7, .	4.7	26
8	Modeling Effects of Surface Properties and Probe Density for Nanoscale Biosensor Design: A Case Study of DNA Hybridization near Surfaces. Journal of Physical Chemistry B, 2021, 125, 1746-1754.	1.2	6
9	Substitution of a Surface-Exposed Residue Involved in an Allosteric Network Enhances Tryptophan Synthase Function in Cells. Frontiers in Molecular Biosciences, 2021, 8, 679915.	1.6	7
10	Molecular Mechanics Study of Flow and Surface Influence in Ligand–Protein Association. Frontiers in Molecular Biosciences, 2021, 8, 659687.	1.6	3
11	Proteome-Wide Characterizations of <i>N</i> ⁶ -Methyl-Adenosine Triphosphate- and <i>N</i> ⁶ -Furfuryl-Adenosine Triphosphate-Binding Capabilities of Kinases. Analytical Chemistry, 2021, 93, 13251-13259.	3.2	4
12	Insights Into Dynamics of Inhibitor and Ubiquitin-Like Protein Binding in SARS-CoV-2 Papain-Like Protease. Frontiers in Molecular Biosciences, 2020, 7, 174.	1.6	51
13	Inhibiting Matrix Metalloproteinase-2 Activation by Perturbing Protein–Protein Interactions Using a Cyclic Peptide. Journal of Medicinal Chemistry, 2020, 63, 6979-6990.	2.9	16
14	Amyloid-β (Aβ42) Peptide Aggregation Rate and Mechanism on Surfaces with Widely Varied Properties: Insights from Brownian Dynamics Simulations. Journal of Physical Chemistry B, 2020, 124, 5549-5558.	1.2	7
15	Transient States and Barriers from Molecular Simulations and the Milestoning Theory: Kinetics in Ligand–Protein Recognition and Compound Design. Journal of Chemical Theory and Computation, 2020, 16, 1882-1895.	2.3	19
16	Discovery of CDK8/CycC Ligands with a New Virtual Screening Tool. ChemMedChem, 2019, 14, 107-118.	1.6	8
17	Coordinated Network Changes across the Catalytic Cycle of Alpha Tryptophan Synthase. Structure, 2019, 27, 1405-1415.e5.	1.6	9
18	Dynamics and molecular interactions of single-stranded DNA in nucleic acid biosensors with varied surface properties. Physical Chemistry Chemical Physics, 2019, 21, 16367-16380.	1.3	13

#	Article	IF	CITATIONS
19	Heterogeneous CPU+GPU-Enabled Simulations for DFTB Molecular Dynamics of Large Chemical and Biological Systems. Journal of Chemical Theory and Computation, 2019, 15, 2807-2815.	2.3	65
20	Potential Mean Force from Umbrella Sampling Simulations: What Can We Learn and What Is Missed?. Journal of Chemical Theory and Computation, 2019, 15, 2433-2443.	2.3	96
21	Role of Molecular Interactions and Protein Rearrangement in the Dissociation Kinetics of p38î± MAP Kinase Type-I/II/III Inhibitors. Journal of Chemical Information and Modeling, 2018, 58, 968-981.	2.5	19
22	Ligand Binding Pathways and Conformational Transitions of the HIV Protease. Biochemistry, 2018, 57, 1533-1541.	1.2	52
23	Immunoproteasome inhibition and bioactivity of thiasyrbactins. Bioorganic and Medicinal Chemistry, 2018, 26, 401-412.	1.4	8
24	Binding Thermodynamics and Kinetics Calculations Using Chemical Host and Guest: A Comprehensive Picture of Molecular Recognition. Journal of Chemical Theory and Computation, 2018, 14, 303-318.	2.3	42
25	Construction of a Sequenceable Protein Mimetic Peptide Library with a True 3D Diversifiable Chemical Space. Journal of the American Chemical Society, 2018, 140, 14552-14556.	6.6	16
26	An MM and QM Study of Biomimetic Catalysis of Diels-Alder Reactions Using Cyclodextrins. Catalysts, 2018, 8, 51.	1.6	5
27	A molecular dynamics investigation of CDK8/CycC and ligand binding: conformational flexibility and implication in drug discovery. Journal of Computer-Aided Molecular Design, 2018, 32, 671-685.	1.3	12
28	Tuning Free Energy by Backbone Conformational Entropy: A Strategy from Disordered Proteins. Biophysical Journal, 2018, 114, 2757-2758.	0.2	1
29	Mechanism of the Association Pathways for a Pair of Fast and Slow Binding Ligands of HIV-1 Protease. Biochemistry, 2017, 56, 1311-1323.	1.2	30
30	Adaptation of a Genetic Screen Reveals an Inhibitor for Mitochondrial Protein Import Component Tim44. Journal of Biological Chemistry, 2017, 292, 5429-5442.	1.6	18
31	Systematic Dissociation Pathway Searches Guided by Principal Component Modes. Journal of Chemical Theory and Computation, 2017, 13, 2230-2244.	2.3	7
32	Understanding ligand-receptor non-covalent binding kinetics using molecular modeling. Frontiers in Bioscience - Landmark, 2017, 22, 960-981.	3.0	18
33	Exploring the binding properties and structural stability of an opsin in the chytrid <i>Spizellomyces punctatus</i> using comparative and molecular modeling. PeerJ, 2017, 5, e3206.	0.9	7
34	Investigation of Structural Dynamics of Enzymes and Protonation States of Substrates Using Computational Tools. Catalysts, 2016, 6, 82.	1.6	12
35	Mechanisms of Enhanced Catalysis in Enzyme–DNA Nanostructures Revealed through Molecular Simulations and Experimental Analysis. ChemBioChem, 2016, 17, 1430-1436.	1.3	35
36	Syrbactin Structural Analog TIR-199 Blocks Proteasome Activity and Induces Tumor Cell Death. Journal of Biological Chemistry, 2016, 291, 8350-8362.	1.6	14

#	Article	IF	CITATIONS
37	Protonation states and catalysis: Molecular dynamics studies of intermediates in tryptophan synthase. Protein Science, 2016, 25, 166-183.	3.1	23
38	Analysis of Ligand–Receptor Association and Intermediate Transfer Rates in Multienzyme Nanostructures with All-Atom Brownian Dynamics Simulations. Journal of Physical Chemistry B, 2016, 120, 8518-8531.	1.2	11
39	Visualizing the tunnel in tryptophan synthase with crystallography: Insights into a selective filter for accommodating indole and rejecting water. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 268-279.	1.1	26
40	Endosidin2 targets conserved exocyst complex subunit EXO70 to inhibit exocytosis. Proceedings of the United States of America, 2016, 113, E41-50.	3.3	129
41	Characterization of Promiscuous Binding of Phosphor Ligands to Breast-Cancer-Gene 1 (BRCA1) C-Terminal (BRCT): Molecular Dynamics, Free Energy, Entropy and Inhibitor Design. PLoS Computational Biology, 2016, 12, e1005057.	1.5	21
42	Modeling of Enhanced Catalysis in Multienzyme Nanostructures: Effect of Molecular Scaffolds, Spatial Organization, and Concentration. Journal of Chemical Theory and Computation, 2015, 11, 286-292.	2.3	37
43	Tuning Enzyme Kinetics through Designed Intermolecular Interactions Far from the Active Site. ACS Catalysis, 2015, 5, 2149-2153.	5.5	61
44	Achieving Peptide Binding Specificity and Promiscuity by Loops: Case of the Forkhead-Associated Domain. PLoS ONE, 2014, 9, e98291.	1.1	4
45	Switches of hydrogen bonds during ligand–protein association processes determine binding kinetics. Journal of Molecular Recognition, 2014, 27, 537-548.	1.1	21
46	Amino Acid Networks in a (β/α) ₈ Barrel Enzyme Change during Catalytic Turnover. Journal of the American Chemical Society, 2014, 136, 6818-6821.	6.6	41
47	ARGONAUTE PIWI domain and microRNA duplex structure regulate small RNA sorting in Arabidopsis. Nature Communications, 2014, 5, 5468.	5.8	69
48	Protein binding for detection of small changes on a nanoparticle surface. Analyst, The, 2014, 139, 1364-1371.	1.7	12
49	Protonation States of the Tryptophan Synthase Internal Aldimine Active Site from Solid-State NMR Spectroscopy: Direct Observation of the Protonated Schiff Base Linkage to Pyridoxal-5′-Phosphate. Journal of the American Chemical Society, 2014, 136, 12824-12827.	6.6	52
50	Facet Selectivity of Ligands on Silver Nanoplates: Molecular Mechanics Study. Journal of Physical Chemistry C, 2014, 118, 21589-21598.	1.5	14
51	Agonist and antagonist binding to the nuclear vitamin D receptor: dynamics, mutation effects and functional implications. In Silico Pharmacology, 2013, 1, 2.	1.8	11
52	Atomistic Modelling of Phosphopeptide Recognition for Modular Domains. Annual Reports in Computational Chemistry, 2013, 9, 61-84.	0.9	1
53	Ligand Binding Pathway Elucidation for Cryptophane Host–Guest Complexes. Journal of Chemical Theory and Computation, 2013, 9, 2010-2019.	2.3	4
54	The paradox of conformational constraint in the design of Cbl(TKB)-binding peptides. Scientific Reports, 2013, 3, 1639.	1.6	17

#	Article	IF	CITATIONS
55	Homology Modeling of Cannabinoid Receptors: Discovery of Cannabinoid Analogues for Therapeutic Use. Methods in Molecular Biology, 2012, 819, 595-613.	0.4	8
56	Mechanistic Insights into Phosphopeptide–BRCT Domain Association: Preorganization, Flexibility, and Phosphate Recognition. Journal of Physical Chemistry B, 2012, 116, 10247-10258.	1.2	6
57	Insights from Free-Energy Calculations: Protein Conformational Equilibrium, Driving Forces, and Ligand-Binding Modes. Biophysical Journal, 2012, 103, 342-351.	0.2	30
58	Ligand-specific homology modeling of human cannabinoid (CB1) receptor. Journal of Molecular Graphics and Modelling, 2012, 38, 155-164.	1.3	14
59	X-ray and NMR Crystallography in an Enzyme Active Site: The Indoline Quinonoid Intermediate in Tryptophan Synthase. Journal of the American Chemical Society, 2011, 133, 4-7.	6.6	101
60	Gating and Intermolecular Interactions in Ligand-Protein Association: Coarse-Grained Modeling of HIV-1 Protease. Journal of Chemical Theory and Computation, 2011, 7, 3438-3446.	2.3	36
61	Mechanism of PhosphoThreonine/Serine Recognition and Specificity for Modular Domains from All-atom Molecular Dynamics. BMC Biophysics, 2011, 4, 12.	4.4	12
62	T-Analyst: a program for efficient analysis of protein conformational changes by torsion angles. Journal of Computer-Aided Molecular Design, 2010, 24, 819-827.	1.3	29
63	Structural basis for selective activation of ABA receptors. Nature Structural and Molecular Biology, 2010, 17, 1109-1113.	3.6	104
64	The Role of Oligomerization and Cooperative Regulation in Protein Function: The Case of Tryptophan Synthase. PLoS Computational Biology, 2010, 6, e1000994.	1.5	40
65	Synergistic Regulation and Ligand-Induced Conformational Changes of Tryptophan Synthase. Biochemistry, 2009, 48, 9921-9931.	1.2	25
66	Thermal Isomerization of Cannabinoid Analogues. Journal of the American Chemical Society, 2009, 131, 16640-16641.	6.6	24
67	Dynamics of the Acetylcholinesterase Tetramer. Biophysical Journal, 2008, 94, 1144-1154.	0.2	28
68	Diffusional Channeling in the Sulfate-Activating Complex: Combined Continuum Modeling and Coarse-Grained Brownian Dynamics Studies. Biophysical Journal, 2008, 95, 4659-4667.	0.2	25
69	Entropic contributions and the influence of the hydrophobic environment in promiscuous protein–protein association. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7456-7461.	3.3	69
70	Ligand configurational entropy and protein binding. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1534-1539.	3.3	350
71	Flap opening dynamics in HIV-1 protease explored with a coarse-grained model. Journal of Structural Biology, 2007, 157, 606-615.	1.3	113
72	HIV-1 Protease Substrate Binding and Product Release Pathways Explored with Coarse-Grained Molecular Dynamics. Biophysical Journal, 2007, 92, 4179-4187.	0.2	74

#	Article	IF	CITATIONS
73	Binding Pathways of Ligands to HIV-1 Protease: Coarse-grained and Atomistic Simulations. Chemical Biology and Drug Design, 2007, 69, 5-13.	1.5	67
74	The Influence of Macromolecular Crowding on HIV-1 Protease Internal Dynamics. Journal of the American Chemical Society, 2006, 128, 6006-6007.	6.6	96
75	Gated Binding of Ligands to HIV-1 Protease: Brownian Dynamics Simulations in a Coarse-Grained Model. Biophysical Journal, 2006, 90, 3880-3885.	0.2	80
76	Concepts in Receptor Optimization:Â Targeting the RGD Peptide. Journal of the American Chemical Society, 2006, 128, 4675-4684.	6.6	39
77	The Entropic Cost of Protein-Protein Association: A Case Study on Acetylcholinesterase Binding to Fasciculin-2. Biophysical Journal, 2005, 89, L25-L27.	0.2	44
78	Evaluating the Accuracy of the Quasiharmonic Approximation. Journal of Chemical Theory and Computation, 2005, 1, 1017-1028.	2.3	160
79	Free Energy, Entropy, and Induced Fit in Hostâ ``Guest Recognition:Â Calculations with the Second-Generation Mining Minima Algorithm. Journal of the American Chemical Society, 2004, 126, 13156-13164.	6.6	211
80	Calculation of Cyclodextrin Binding Affinities: Energy, Entropy, and Implications for Drug Design. Biophysical Journal, 2004, 87, 3035-3049.	0.2	217
81	Tork: Conformational analysis method for molecules and complexes. Journal of Computational Chemistry, 2003, 24, 1987-1998.	1.5	102
82	Calculation of Molecular Configuration Integrals. Journal of Physical Chemistry B, 2003, 107, 1048-1055.	1.2	76