
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5508463/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A DFT study on the degradation mechanism of vitamin B2. Food Chemistry Molecular Sciences, 2022, 4, 100080.	2.1	1
2	A density functional theory study of the reaction mechanism of formation of phenolphthalein and fluorescein. Journal of Physical Organic Chemistry, 2021, 34, e4136.	1.9	1
3	A density functional theory study of the hydride shift in the Eschweiler–Clarke reaction. Journal of Physical Organic Chemistry, 2021, 34, e4253.	1.9	0
4	How is vitamin B1 oxidized to thiochrome? Elementary processes revealed by a DFT study. Organic and Biomolecular Chemistry, 2021, 19, 4529-4536.	2.8	3
5	How Is the Oxidation Related to the Tautomerization in Vitamin B9?. Journal of Physical Chemistry A, 2021, 125, 9346-9354.	2.5	1
6	Corona Discharge and Field Electron Emission in Ambient Air Using a Sharp Metal Needle: Formation and Reactivity of CO ₃ ^{â^'•} and O ₂ ^{ⴒ•} . Mass Spectrometry, 2021, 10, A0100-A0100.	0.6	2
7	A DFT Study on Transition States of Inhibition of Oxidation by αâ€Tocopherol. ChemistrySelect, 2020, 5, 9184-9194.	1.5	0
8	A novel contrast of the reactions of 2,4,6-trinitrotoluene (TNT) in atmospheric-pressure O2 and N2 plasma: Experimental and theoretical study. International Journal of Mass Spectrometry, 2020, 450, 116308.	1.5	5
9	DFT Study of the Hydroxyl Radical Addition to 2′-Deoxyguanosine and the Guanine Base in Four Double-Stranded B-Form Dimers. Journal of Physical Chemistry B, 2020, 124, 1374-1382.	2.6	3
10	A DFT study of the hydrolysis of hydantoin. International Journal of Chemical Kinetics, 2019, 51, 831-839.	1.6	0
11	Ketoâ€Enol Tautomerization Controls the Acidâ€Catalyzed Robinson Annulation ―A DFT Study. ChemistrySelect, 2019, 4, 4962-4966.	1.5	1
12	The adenine ring influences the adenosine 5′â€ŧriphosphate hydrolysis. International Journal of Quantum Chemistry, 2019, 119, e25816.	2.0	0
13	Dipping probe electrospray ionization/mass spectrometry for direct on-site and low-invasive food analysis. Food Chemistry, 2018, 260, 53-60.	8.2	16
14	A DFT study of proton transfers for the reaction of phenol and hydroxyl radical leading to dihydroxybenzene and H ₂ 0 in the water cluster. International Journal of Quantum Chemistry, 2018, 118, e25510.	2.0	7
15	The tautomerization and ring closure in the Claisen rearrangement: A DFT study. International Journal of Quantum Chemistry, 2018, 118, e25677.	2.0	2
16	Oneâ \in Step Paths of the Alkene Hydration Revealed by a DFT Study. ChemistrySelect, 2017, 2, 6857-6864.	1.5	2
17	Syntheses, X-ray crystal structures, and emission properties of diprotonated tetrapyridylpyrazine and triprotonated terpyridine. Journal of Physical Organic Chemistry, 2016, 29, 269-275.	1.9	9
18	A DFT study of hydride transfers to the carbonyl oxygen of DDQ. International Journal of Quantum Chemistry, 2015, 115, 1533-1542.	2.0	11

#	Article	IF	CITATIONS
19	Frontier orbitals and transition states in the oxidation and degradation of <scp>l</scp> -ascorbic acid: a DFT study. Organic and Biomolecular Chemistry, 2015, 13, 4002-4015.	2.8	13
20	Proton transfers in the Strecker reaction revealed by DFT calculations. Beilstein Journal of Organic Chemistry, 2014, 10, 1765-1774.	2.2	5
21	Substrate dependent reaction channels of the Wolff–Kishner reduction reaction: A theoretical study. Beilstein Journal of Organic Chemistry, 2014, 10, 259-270.	2.2	11
22	S _N 1 _N 2 and S _N 2 _N 3 mechanistic changes revealed by transition states of the hydrolyses of benzyl chlorides and benzenesulfonyl chlorides. Journal of Computational Chemistry, 2014, 35, 1140-1148.	3.3	14
23	A DFT study on proton transfers in hydrolysis reactions of phosphate dianion and sulfate monoanion. Journal of Computational Chemistry, 2014, 35, 2195-2204.	3.3	5
24	Three Competitive Transition States at the Glycosidic Bond of Sucrose in Its Acid-Catalyzed Hydrolysis. Journal of Organic Chemistry, 2013, 78, 2527-2533.	3.2	20
25	A new intermediate in the Prins reaction. Beilstein Journal of Organic Chemistry, 2013, 9, 476-485.	2.2	9
26	An aniline dication-like transition state in the Bamberger rearrangement. Beilstein Journal of Organic Chemistry, 2013, 9, 1073-1082.	2.2	11
27	Presence or absence of a novel charge-transfer complex in the base-catalyzed hydrolysis of <i>N</i> -ethylbenzamide or ethyl benzoate. Beilstein Journal of Organic Chemistry, 2013, 9, 185-196.	2.2	5
28	How is the anionic tetrahedral intermediate involved in the isomerization of aspartyl peptides to iso-aspartyl ones? A DFT study on the tetra-peptide. Organic and Biomolecular Chemistry, 2012, 10, 8007.	2.8	1
29	Proton Transfers along Hydrogen Bonds in the Tautomerization of Purine. Journal of Physical Chemistry A, 2012, 116, 1289-1297.	2.5	11
30	A significant role of alkaline cations on the Reimer–Tiemann reaction. Organic and Biomolecular Chemistry, 2011, 9, 5109.	2.8	8
31	An unsymmetrical behavior of reactant units in the Kolbe–Schmitt reaction. Theoretical Chemistry Accounts, 2011, 130, 891-900.	1.4	2
32	A computational study on the relationship between formation and electrolytic dissociation of carbonic acid. Theoretical Chemistry Accounts, 2011, 130, 909-918.	1.4	10
33	Role of hydrogen bonds in acid-catalyzed hydrolyses of esters. Theoretical Chemistry Accounts, 2011, 130, 429-438.	1.4	12
34	Biradical processes in reactions between benzyne and tropone. Theoretical Chemistry Accounts, 2011, 130, 981-990.	1.4	10
35	Is the neutral Knoevenagel reaction initiated by the carbanion formation?. Journal of Physical Organic Chemistry, 2011, 24, 663-671.	1.9	6
36	Remarkable emissions in diprotonated 2,2′:6′,2″â€ŧerpyridine derivatives. Journal of Physical Organic Chemistry, 2010, 23, 431-439.	1.9	14

#	Article	IF	CITATIONS
37	Correlation between the Rate Order and the Number of Molecules in the Reaction of Trimethyl Phosphite with Water in Acetonitrile Solvent. Journal of Physical Chemistry A, 2010, 114, 11699-11707.	2.5	1
38	Detailed Description of the Metal-to-Ligand Charge-Transfer State in Monoterpyridine IrIII Complexes. European Journal of Inorganic Chemistry, 2009, 2009, 2067-2073.	2.0	5
39	A metal free blue emission by the protonated 2,2′:6′,2″â€ŧerpyridine hexafluorophosphate. Journal of Physical Organic Chemistry, 2009, 22, 410-417.	1.9	19
40	A remarkable difference in the deprotonation steps of the Friedel–Crafts acylation and alkylation reactions. Journal of Physical Organic Chemistry, 2009, 22, 1094-1103.	1.9	21
41	Ï€ Complexes in benzidine rearrangement. Organic and Biomolecular Chemistry, 2009, 7, 4631.	2.8	21
42	Three competitive transition states in the benzoin condensation compared to the clear rate-determining step in the Cannizzaro reaction. Organic and Biomolecular Chemistry, 2009, 7, 951.	2.8	22
43	The Role of Hydrogen Bonds in Baeyerâ^'Villiger Reactions. Journal of Organic Chemistry, 2007, 72, 3031-3041.	3.2	41
44	Reaction ofo-Benzyne with Tropothione Involving Biradical Processesâ€. Journal of Organic Chemistry, 2007, 72, 2832-2841.	3.2	23
45	Reaction Paths of the Water-Assisted Solvolysis of N,N-Dimethylformamide. Journal of Physical Chemistry A, 2007, 111, 6296-6303.	2.5	11
46	Theoretical study of the role of solvent H2O in neopentyl and pinacol rearrangements. Journal of Computational Chemistry, 2007, 28, 1561-1571.	3.3	8
47	Synthesis, Characterization, and DFT Investigation of IrIII Tolylterpyridine Complexes. European Journal of Inorganic Chemistry, 2007, 2007, 1911-1919.	2.0	35
48	How Many Elementary Processes Are Involved in Base- and Acid-Promoted Aldol Condensations?. European Journal of Organic Chemistry, 2007, 2007, 6070-6077.	2.4	3
49	A FMO-Controlled Reaction Path in the Benzilâ^'Benzilic Acid Rearrangement. Journal of Organic Chemistry, 2006, 71, 1777-1783.	3.2	30
50	Active Role of Hydrogen Bonds in Rupe and Meyerâ^'Schuster Rearrangements. Journal of Chemical Theory and Computation, 2006, 2, 1379-1387.	5.3	11
51	Tropone Is a Mere Ketone for Cycloadditions to Ketenes. Helvetica Chimica Acta, 2005, 88, 1519-1539.	1.6	19
52	Symmetry or asymmetry in cheletropic additions forming cyclopropanes. Theoretical Chemistry Accounts, 2005, 113, 95-106.	1.4	1
53	Is the Beckmann Rearrangement a Concerted or Stepwise Reaction? A Computational Study. Journal of Organic Chemistry, 2005, 70, 10638-10644.	3.2	47
54	A mild and efficient Si (111) surface modification via hydrosilylation of activated alkynes. Journal of Materials Chemistry, 2005, 15, 4906.	6.7	40

#	Article	IF	CITATIONS
55	Reaction Paths of the Water-Assisted Neutral Hydrolysis of Ethyl Acetate. Journal of Physical Chemistry A, 2005, 109, 7216-7224.	2.5	36
56	Reaction Paths of Tautomerization between Hydroxypyridines and Pyridones. Journal of Physical Chemistry A, 2005, 109, 1974-1980.	2.5	57
57	Revisiting Hydrogen [1,5] Shifts in Cyclopentadiene and Cycloheptatriene as Bimolecular Reactions. Journal of Chemical Theory and Computation, 2005, 1, 944-952.	5.3	17
58	A computational study of the role of hydrogen bonds in SN1 and E1 reactions. Journal of Computational Chemistry, 2004, 25, 598-608.	3.3	18
59	Reaction Paths of Ketoâ^'Enol Tautomerization of β-Diketones. Journal of Physical Chemistry A, 2004, 108, 2750-2757.	2.5	90
60	A computational study of interactions between acetic acid and water molecules. Journal of Computational Chemistry, 2003, 24, 939-947.	3.3	15
61	Gas Phase Study of the Clustering Reactions of C2H5+,s-C3H7+, andt-C4H9+with CO2and N2O:Â Isomeric Structure of C2H5+, C2H5+(CO2)n, and C2H5+(N2O)n. Journal of Physical Chemistry A, 2003, 107, 775-781.	2.5	13
62	Gas-Phase Solvation of O2+, O2-, O4-, O3-, and CO3-with CO. Journal of Physical Chemistry A, 2003, 107, 4817-4825.	2.5	4
63	Molecular Interactions between Glycine and H2O Affording the Zwitterion. Journal of Physical Chemistry A, 2003, 107, 7915-7922.	2.5	53
64	Gas-phase ion/molecule reactions in octafluorocyclobutane. Journal of Chemical Physics, 2002, 116, 7574-7582.	3.0	15
65	Gas-Phase Ionâ^'Molecule Reactions in C3F6. Journal of Physical Chemistry A, 2002, 106, 603-611.	2.5	9
66	Olefin–olefin reactions mediated by Lewis acids may afford cyclopropanes rather than cyclobutanes: a mechanistic study of cyclopropane formation using a 1-seleno-2-silylethene â€. Perkin Transactions II RSC, 2001, , 164-173.	1.1	4
67	Norcaradiene intermediates in mass spectral fragmentations of tropone and tropothioneElectronic supplementary information (ESI) available: reaction paths supporting Figs. 3ââ,¬â€œ6. See http://www.rsc.org/suppdata/p2/b1/b102127n/. Perkin Transactions II RSC, 2001, , 2202-2210.	1.1	4
68	Characteristic Changes of Bond Energies for Gas-Phase Cluster Ions of Halide Ions with Methane and Chloromethanes. Journal of Physical Chemistry A, 2001, 105, 4887-4893.	2.5	41
69	Hydrogen bonds in gas-phase clusters between halide ions and olefins. Journal of the American Society for Mass Spectrometry, 2001, 12, 144-149.	2.8	15
70	A computational study of base-catalyzed reactions between isocyanates and epoxides affording 2-oxazolidones and isocyanurates. Journal of Computational Chemistry, 2001, 22, 316-326.	3.3	20
71	On the Structure and Stability of Gas-Phase Cluster Ions SiF3+(CO)n, SiF3OH2+(SiF4)n, SiF4H+(SiF4)n, and F-(SiF4)n. Journal of Physical Chemistry A, 2000, 104, 8353-8359.	2.5	6
72	A Mechanism of the Ion Separation of the NaCl Microcrystal via the Association of Water Clusters. Journal of Physical Chemistry B, 2000, 104, 10242-10252.	2.6	38

#	Article	IF	CITATIONS
73	A Theoretical Study of Curing Reactions of Maleimide Resins through Michael Additions of Amines. Journal of Organic Chemistry, 2000, 65, 1544-1548.	3.2	22
74	A Three-Center Orbital Interaction in the Dielsâ^'Alder Reactions Catalyzed by Lewis Acids. Journal of Organic Chemistry, 2000, 65, 1830-1841.	3.2	40
75	Frontier-orbital analyses of ketene [2+2] cycloadditions. Theoretical Chemistry Accounts, 1999, 102, 139-146.	1.4	17
76	Experimental and Theoretical Studies of Gas-Phase Ion/Molecule Reactions in SiF4Forming SiFm+(SiF4)nClusters (m= 0â^'3 andn= 0â^'2). Journal of Physical Chemistry A, 1999, 103, 568-572.	2.5	10
77	Chiral Synthesis of Cyclopropanes. Stereoselective [2 + 1] Cycloaddition Reactions of 1-Seleno-2-silylethenes with Di-(â^')-menthyl Ethene-1,1-dicarboxylates. Journal of Organic Chemistry, 1999, 64, 2367-2374.	3.2	19
78	[2 + 1] Cycloaddition Reactions of a 1-Seleno-2-silylethene to 2-Sulfonylacrylates:Â Stereoselective Synthesis of Sulfone-Substituted Cyclopropanes. Journal of Organic Chemistry, 1999, 64, 9521-9528.	3.2	21
79	How is the Fluoride Ion Bound to O2, N2, and CO Molecules?. Journal of Physical Chemistry A, 1998, 102, 6916-6920.	2.5	8
80	A Novel Strategy for Cyclobutane Formation. Fine Tuning of Cyclobutanation vs Cyclopropanation. Journal of Organic Chemistry, 1998, 63, 3371-3378.	3.2	18
81	Anomalous Change of Bond Energies in the Cluster Ion N2H+(H2)n. Journal of Physical Chemistry A, 1998, 102, 1214-1218.	2.5	17
82	Theoretical Study of Hydrolysis and Condensation of Silicon Alkoxides. Journal of Physical Chemistry A, 1998, 102, 3991-3998.	2.5	85
83	Formation of the trimer ion core in the heterogeneous rare gas cluster ions. Journal of Chemical Physics, 1998, 108, 6689-6697.	3.0	5
84	Gas-Phase Ion-Molecule Reactions in Tetrahydrothiophene Journal of the Mass Spectrometry Society of Japan, 1998, 46, 442-447.	0.1	0
85	A Molecular Orbital Calculation of Chemically Interacting Systems.: Interaction between Two Radicals. World Scientific Series in 20th Century Chemistry, 1997, , 341-350.	0.0	0
86	The Problem of Non-Recognition for Dienes in Ketene Reactions. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1997, 55, 56-64.	0.1	2
87	A Theoretical Study of the Epoxidation of Olefins by Peracids. Journal of Organic Chemistry, 1996, 61, 616-620.	3.2	46
88	Steric effects upon transition states of radical addition polymerizations. Journal of Polymer Science Part A, 1996, 34, 1407-1414.	2.3	5
89	Ab Initio Study of Proton Affinities of Three Crown Ethers. The Journal of Physical Chemistry, 1996, 100, 7367-7371.	2.9	29
90	Gas-Phase Stability and Structure of the Cluster Ions CF3+(CO)n, CF3+(N2)n, CF3+(CF4)n, and CF4H+(CF4)n. The Journal of Physical Chemistry, 1996, 100, 5245-5251.	2.9	17

6

#	Article	IF	CITATIONS
91	Gas-phase stability of cluster ions SF m + (SF6) n with m = 0–5 and n = 1–3. Journal of the American Society for Mass Spectrometry, 1995, 6, 1137-1142.	2.8	7
92	Gasâ€phase solvation of NO+, O+2, N2O+, N2OH+, and H3O+ with N2O. Journal of Chemical Physics, 1994, 101, 4073-4082.	3.0	12
93	Comparative study of the gas-phase bond strengths of CO2 and N2O with the halide ions. Journal of the American Society for Mass Spectrometry, 1993, 4, 58-64.	2.8	6
94	Formation of the chelate bonds in the cluster Oâ^'2(CO2)n, COâ^'3(CO2)n, and NOâ^'2(CO2)n. Journal of Chemical Physics, 1992, 97, 643-650.	3.0	21
95	On the formation of the isomeric cluster ions (CO)+n. Journal of Chemical Physics, 1991, 94, 2697-2703.	3.0	14
96	Stability and structure of benzene dimer cation (C6H6)+2in the gas phase. Journal of Chemical Physics, 1991, 95, 8413-8418.	3.0	50
97	Cluster ions: Gasâ€phase stabilities of NO+(O2)n and NO+(CO2)n with n=1–5. Journal of Chemical Physics, 1991, 95, 6800-6805.	3.0	19
98	How are nitrogen molecules bound to NO+2 and NO+?. Journal of Chemical Physics, 1989, 90, 3268-3273.	3.0	23
99	Stability and structure of cluster ions: Halide ions with CO2. Journal of Chemical Physics, 1987, 87, 3647-3652.	3.0	35
100	A determination of the stabilities and structures of Fâ^'(C6H6) and Fâ^'(C6F6) clusters. Journal of Chemical Physics, 1987, 86, 4102-4105.	3.0	57
101	Theoretical study of photochemical reactions: Electron assignment and the state correlation diagram. International Journal of Quantum Chemistry, 1980, 18, 243-250.	2.0	7
102	MO Study of the photochemical behavior of the imine bond. International Journal of Quantum Chemistry, 1980, 18, 457-462.	2.0	23
103	A theoretical study on the photodissociation of C3O2. Theoretica Chimica Acta, 1979, 52, 257-265.	0.8	8
104	A DFT study of the active role of the phosphate group of an internal aldimine in a transamination reaction. Organic and Biomolecular Chemistry, 0, , .	2.8	0