
Gustavo Henrique Denzin Tonoli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5507664/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Procurement and Characterization of Biodegradable Films made from Blends of Eucalyptus, Pine and Cocoa Bean Shell Nanocelluloses. Waste and Biomass Valorization, 2023, 14, 3169-3181.	1.8	5
2	Bio-based films/nanopapers from lignocellulosic wastes for production of added-value micro-/nanomaterials. Environmental Science and Pollution Research, 2022, 29, 8665-8683.	2.7	14
3	Investigation of dispersion methodologies of microcrystalline and nano-fibrillated cellulose on cement pastes. Cement and Concrete Composites, 2022, 126, 104351.	4.6	13
4	Hybrid films from plant and bacterial nanocellulose: mechanical and barrier properties. Nordic Pulp and Paper Research Journal, 2022, 37, 159-174.	0.3	8
5	Coir fiber as reinforcement in cement-based materials. , 2022, , 707-739.		3
6	Effect of overlapping cellulose nanofibrils and nanoclay layers on mechanical and barrier properties of spray-coated papers. Cellulose, 2022, 29, 1097-1113.	2.4	12
7	Hydroxypropyl methylcellulose films reinforced with cellulose micro/nanofibrils: study of physical, optical, surface, barrier and mechanical properties. Nordic Pulp and Paper Research Journal, 2022, 37, 366-384.	0.3	9
8	Impact of nanosilica deposited on cellulose pulp fibers surface on hydration and fiber-cement compressive strength. Construction and Building Materials, 2022, 326, 126847.	3.2	6
9	Copaiba oil and vegetal tannin as functionalizing agents for a§ai nanofibril films: valorization of forest wastes from Amazonia. Environmental Science and Pollution Research, 2022, 29, 66422-66437.	2.7	5
10	Uso de biopolÃmeros no recobrimento de papéis para embalagens alimentÃcias: uma breve revisão. Research, Society and Development, 2022, 11, e26511729844.	0.0	0
11	Alkaline Pretreatment Facilitate Mechanical Fibrillation of Unbleached Cellulose Pulps for Obtaining of Cellulose micro/nanofibrils (MFC). Journal of Natural Fibers, 2022, 19, 13385-13400.	1.7	6
12	Fibers pre-treatments with sodium silicate affect the properties of suspensions, films, and quality index of cellulose micro/nanofibrils. Nordic Pulp and Paper Research Journal, 2022, 37, 534-552.	0.3	4
13	Redispersion and structural change evaluation of dried microfibrillated cellulose. Carbohydrate Polymers, 2021, 252, 117165.	5.1	47
14	Characterization of cassava starch/soy protein isolate blends obtained by extrusion and thermocompression. Industrial Crops and Products, 2021, 160, 113092.	2.5	41
15	Effect of pyraclostrobin on mulberry leaves nutrients, silkworm cocoon production and silk fiber performance. Revista Materia, 2021, 26, .	0.1	0
16	Exfoliating Agents for Skincare Soaps Obtained from the Crabwood Waste Bagasse, a Natural Abrasive from Amazonia. Waste and Biomass Valorization, 2021, 12, 4441-4461.	1.8	3
17	Active coatings of thermoplastic starch and chitosan with alpha-tocopherol/bentonite for special green coffee beans. International Journal of Biological Macromolecules, 2021, 170, 810-819.	3.6	11
18	Valorization of Jute Biomass: Performance of Fiber–Cement Composites Extruded with Hybrid Reinforcement (Fibers and Nanofibrils). Waste and Biomass Valorization, 2021, 12, 5743-5761.	1.8	18

#	Article	IF	CITATIONS
19	Optimization of Cellulose Nanofibril Production under Enzymatic Pretreatment and Evaluation of Dislocations in Plant Fibers. Fibers and Polymers, 2021, 22, 1810-1821.	1.1	4
20	Evaluation of changes in cellulose micro/nanofibrils structure under chemical and enzymatic pre-treatments. Holzforschung, 2021, 75, 1042-1051.	0.9	3
21	New biodegradable film produced from cocoa shell nanofibrils containing bioactive compounds. Journal of Coatings Technology Research, 2021, 18, 1613-1624.	1.2	4
22	Addition of wheat straw nanofibrils to improve the mechanical and barrier properties of cassava starch–based bionanocomposites. Industrial Crops and Products, 2021, 170, 113816.	2.5	14
23	Superabsorbent ability polymer to reduce the bulk density of extruded cement boards. Journal of Building Engineering, 2021, 43, 103130.	1.6	4
24	Optimizing cellulose microfibrillation with NaOH pretreatments for unbleached Eucalyptus pulp. Cellulose, 2021, 28, 11519-11531.	2.4	13
25	Preparation and characterization of tannin-based adhesives reinforced with cellulose nanofibrils for wood bonding. Holzforschung, 2021, 75, 159-167.	0.9	11
26	Cement-based corrugated sheets reinforced with polypropylene fibres subjected to a high-performance curing method. Construction and Building Materials, 2020, 262, 120791.	3.2	6
27	Pretreatment Affects Activated Carbon from Piassava. Polymers, 2020, 12, 1483.	2.0	6
28	Influence of thermal treatment of eucalyptus fibers on the physical-mechanical properties of extruded fiber-cement composites. Materials Today: Proceedings, 2020, 31, S348-S352.	0.9	6
29	Obtaining cellulosic nanofibrils from oat straw for biocomposite reinforcement: Mechanical and barrier properties. Industrial Crops and Products, 2020, 148, 112264.	2.5	38
30	Monitoring the dynamics of Portland cement hydration through photoluminescence and other correlated spectroscopy techniques. Construction and Building Materials, 2020, 252, 119073.	3.2	5
31	Influence of chemical pretreatments on plant fiber cell wall and their implications on the appearance of fiber dislocations. Holzforschung, 2020, 74, 949-955.	0.9	10
32	Massaranduba Sawdust: A Potential Source of Charcoal and Activated Carbon. Polymers, 2019, 11, 1276.	2.0	18
33	Fiber-cement composites hydrated with carbonated water: Effect on physical-mechanical properties. Cement and Concrete Research, 2019, 124, 105812.	4.6	11
34	Artificial neural network and partial least square regressions for rapid estimation of cellulose pulp dryness based on near infrared spectroscopic data. Carbohydrate Polymers, 2019, 224, 115186.	5.1	28
35	Tannin-stabilized silver nanoparticles and citric acid added associated to cellulose nanofibrils: effect on film antimicrobial properties. SN Applied Sciences, 2019, 1, 1.	1.5	7
36	Curaua and eucalyptus nanofiber films by continuous casting: mixture of cellulose nanocrystals and nanofibrils. Cellulose, 2019, 26, 2453-2470.	2.4	24

#	Article	IF	CITATIONS
37	Improving cellulose nanofibrillation of non-wood fiber using alkaline and bleaching pre-treatments. Industrial Crops and Products, 2019, 131, 203-212.	2.5	65
38	Influence of hemicellulose content of <i>Eucalyptus</i> and <i>Pinus</i> fibers on the grinding process for obtaining cellulose micro/nanofibrils. Holzforschung, 2019, 73, 1035-1046.	0.9	42
39	Influence of the initial moisture content on the carbonation degree and performance of fiber-cement composites. Construction and Building Materials, 2019, 215, 22-29.	3.2	17
40	Study of morphological properties and rheological parameters of cellulose nanofibrils of cocoa shell (Theobroma cacao L.). Carbohydrate Polymers, 2019, 214, 152-158.	5.1	19
41	Jute fibers and micro/nanofibrils as reinforcement in extruded fiber-cement composites. Construction and Building Materials, 2019, 211, 517-527.	3.2	60
42	Bio-based thin films of cellulose nanofibrils and magnetite for potential application in green electronics. Carbohydrate Polymers, 2019, 207, 100-107.	5.1	33
43	Activated carbons prepared by physical activation from different pretreatments of amazon piassava fibers. Journal of Natural Fibers, 2019, 16, 961-976.	1.7	15
44	Main Characteristics of Underexploited Amazonian Palm Fibers for Using as Potential Reinforcing Materials. Waste and Biomass Valorization, 2019, 10, 3125-3142.	1.8	9
45	Incorporação de Nanomateriais e emulsão de ceras no desenvolvimento de papéis multicamadas. Scientia Forestalis/Forest Sciences, 2019, 47, .	0.2	8
46	CELLULOSE NANOFIBRILS MODIFICATION WITH POLYANILINE AIMING AT ENHANCING ELECTRICAL PROPERTIES FOR APPLICATION IN FLEXIBLE ELECTRONICS. Cellulose Chemistry and Technology, 2019, 53, 775-786.	0.5	6
47	CELLULOSE SHEETS MADE FROM MICRO/NANOFIBRILLATED FIBERS OF BAMBOO, JUTE AND EUCALYPTUS CELLULOSE PULPS. Cellulose Chemistry and Technology, 2019, 53, 291-305.	0.5	3
48	Effect of the nano-fibrillation of bamboo pulp on the thermal, structural, mechanical and physical properties of nanocomposites based on starch/poly(vinyl alcohol) blend. Cellulose, 2018, 25, 1823-1849.	2.4	41
49	Spraying Cellulose Nanofibrils for Improvement of Tensile and Barrier Properties of Writing & Printing (W&P) Paper. Journal of Wood Chemistry and Technology, 2018, 38, 233-245.	0.9	20
50	Nanoindentation study of the interfacial zone between cellulose fiber and cement matrix in extruded composites. Cement and Concrete Composites, 2018, 85, 1-8.	4.6	33
51	Hydrothermal treatment of strand particles of pine for the improvement of OSB panels. European Journal of Wood and Wood Products, 2018, 76, 155-162.	1.3	9
52	Cellulose nanofibrils/nanoclay hybrid composite as a paper coating: Effects of spray time, nanoclay content and corona discharge on barrier and mechanical properties of the coated papers. Food Packaging and Shelf Life, 2018, 15, 87-94.	3.3	49
53	NANOPARTICLES-BASED WOOD PRESERVATIVES: THE NEXT GENERATION OF WOOD PROTECTION?. Cerne, 2018, 24, 397-407.	0.9	34
54	POLYESTER COMPOSITES REINFORCED WITH MALEIC ANHYDRIDE-TREATED FILAMENTS FROM MAUVE. Cerne, 2018, 24, 1-8.	0.9	5

#	Article	IF	CITATIONS
55	How the surface wettability and modulus of elasticity of the Amazonian paricÃ _i nanofibrils films are affected by the chemical changes of the natural fibers. European Journal of Wood and Wood Products, 2018, 76, 1581-1594.	1.3	18
56	Effect of Nano-silica Deposition on Cellulose Fibers on the Initial Hydration of the Portland Cement. BioResources, 2018, 13, .	0.5	6
57	The effect of surface modifications with corona discharge in pinus and eucalyptus nanofibril films. Cellulose, 2018, 25, 5017-5033.	2.4	15
58	Eucalyptus wood nanofibrils as reinforcement of carrageenan and starch biopolymers for improvement of physical properties. Journal of Tropical Forest Science, 2018, 30, 292-303.	0.1	5
59	Renewable hybrid nanocatalyst from magnetite and cellulose for treatment of textile effluents. Carbohydrate Polymers, 2017, 163, 101-107.	5.1	35
60	Polyester Composites Reinforced with Corona-Treated Fibers from Pine, Eucalyptus and Sugarcane Bagasse. Journal of Polymers and the Environment, 2017, 25, 800-811.	2.4	20
61	Enhanced silk performance by enriching the silkworm diet with bordeaux mixture. Journal of Materials Science, 2017, 52, 2684-2693.	1.7	7
62	Impact of nanofibrillation degree of eucalyptus and Amazonian hardwood sawdust on physical properties of cellulose nanofibril films. Wood Science and Technology, 2017, 51, 1095-1115.	1.4	36
63	Lignocellulosic residues in cement-bonded panels. , 2017, , 3-16.		9
64	Influence of cellulose viscosity and residual lignin on water absorption of nanofibril films. Procedia Engineering, 2017, 200, 155-161.	1.2	19
65	Cellulose Associated with Pet Bottle Waste in Cement Based Composites. Materials Research, 2017, 20, 1380-1387.	0.6	13
66	STRENGTH IMPROVEMENT OF HYDROXYPROPYL METHYLCELLULOSE/ STARCH FILMS USING CELLULOSE NANOCRYSTALS. Cerne, 2017, 23, 423-434.	0.9	13
67	Coir and Sisal Fibers as Fillers in the Production of Eucalyptus Medium Density Particleboards - MDP. Materials Research, 2016, 19, 1429-1436.	0.6	2
68	MICRO/NANOFIBRILAS CELULÓSICAS DE EUCALYPTUS EM FIBROCIMENTOS EXTRUDADOS. Cerne, 2016, 22, 59-68.	0.9	34
69	Rationalizing the impact of aging on fiber–matrix interface and stability of cement-based composites submitted to carbonation at early ages. Journal of Materials Science, 2016, 51, 7929-7943.	1.7	21
70	Effect of multiâ€branched PDLA additives on the mechanical and thermomechanical properties of blends with PLLA. Journal of Applied Polymer Science, 2016, 133, .	1.3	16
71	Properties of cellulose micro/nanofibers obtained from eucalyptus pulp fiber treated with anaerobic digestate and high shear mixing. Cellulose, 2016, 23, 1239-1256.	2.4	54
72	Functionally Graded MDP Panels Using Bamboo Particles. Key Engineering Materials, 2015, 668, 39-47.	0.4	4

#	Article	IF	CITATIONS
73	Modification of eucalyptus pulp fiber using silane coupling agents with aliphatic side chains of different length. Polymer Engineering and Science, 2015, 55, 1273-1280.	1.5	14
74	Particles of Coffee Wastes as Reinforcement in Polyhydroxybutyrate (PHB) Based Composites. Materials Research, 2015, 18, 546-552.	0.6	48
75	Nanostructured Polylactic Acid/Candeia Essential Oil Mats Obtained by Electrospinning. Journal of Nanomaterials, 2015, 2015, 1-9.	1.5	40
76	Biocomposite of Cassava Starch Reinforced with Cellulose Pulp Fibers Modified with Deposition of Silica (SiO ₂) Nanoparticles. Journal of Nanomaterials, 2015, 2015, 1-9.	1.5	30
77	Preparation of Cellulose Nanofibrils from Bamboo Pulp by Mechanical Defibrillation for Their Applications in Biodegradable Composites. Journal of Nanoscience and Nanotechnology, 2015, 15, 6751-6768.	0.9	43
78	Starch/PVA-based nanocomposites reinforced with bamboo nanofibrils. Industrial Crops and Products, 2015, 70, 72-83.	2.5	130
79	Nanocellulose Films from Amazon Forest Wood Wastes: Structural and Thermal Properties. Key Engineering Materials, 2015, 668, 110-117.	0.4	8
80	How the chemical nature of Brazilian hardwoods affects nanofibrillation of cellulose fibers and film optical quality. Cellulose, 2015, 22, 3657-3672.	2.4	54
81	Incorporation of bamboo particles and "synthetic termite saliva―in adobes. Construction and Building Materials, 2015, 98, 250-256.	3.2	18
82	High moisture strength of cassava starch/polyvinyl alcohol-compatible blends for the packaging and agricultural sectors. Journal of Polymer Research, 2015, 22, 1.	1.2	48
83	Supercritical carbonation treatment on extruded fibre–cement reinforced with vegetable fibres. Cement and Concrete Composites, 2015, 56, 84-94.	4.6	76
84	Comparative study of 12 pineapple leaf fiber varieties for use as mechanical reinforcement in polymer composites. Industrial Crops and Products, 2015, 64, 68-78.	2.5	88
85	Non-conventional cement-based composites reinforced with vegetable fibers: A review of strategies to improve durability. Materiales De Construccion, 2015, 65, e041.	0.2	33
86	Chemical treatment of banana tree pseudostem particles aiming the production of particleboards. Ciencia E Agrotecnologia, 2014, 38, 43-49.	1.5	7
87	Avaliação da qualidade da madeira de Coffea arabica L. como fonte de bioenergia. Cerne, 2014, 20, 541-549.	0.9	7
88	Evaluation of reaction factors for deposition of silica (SiO2) nanoparticles on cellulose fibers. Carbohydrate Polymers, 2014, 114, 424-431.	5.1	70
89	Inclusion of Lignocellulosic Fibers in Plastic Composites. Key Engineering Materials, 2014, 600, 442-446.	0.4	0
90	New products made with lignocellulosic nanofibers from Brazilian amazon forest. IOP Conference Series: Materials Science and Engineering, 2014, 64, 012012.	0.3	12

#	Article	IF	CITATIONS
91	Different ageing conditions on cementitious roofing tiles reinforced with alternative vegetable and synthetic fibres. Materials and Structures/Materiaux Et Constructions, 2014, 47, 433-446.	1.3	12
92	Effect of accelerated carbonation on the microstructure and physical properties of hybrid fiber-cement composites. Minerals Engineering, 2014, 59, 101-106.	1.8	78
93	Electrospinning of zein/tannin bio-nanofibers. Industrial Crops and Products, 2014, 52, 298-304.	2.5	67
94	Mineralogical and microstructural changes promoted by accelerated carbonation and ageing cycles of hybrid fiber–cement composites. Construction and Building Materials, 2014, 68, 750-756.	3.2	60
95	Effect of colloidal silica on the mechanical properties of fiber–cement reinforced with cellulosic fibers. Journal of Materials Science, 2014, 49, 7497-7506.	1.7	26
96	Impact of different silkworm dietary supplements on its silk performance. Journal of Materials Science, 2014, 49, 6302-6310.	1.7	15
97	Resistência das madeiras de pinus, cedro australiano e seus produtos derivados ao ataque de Cryptotermes brevis. Cerne, 2014, 20, 433-439.	0.9	5
98	TPS/PCL Composite Reinforced with Treated Sisal Fibers: Property, Biodegradation and Water-Absorption. Journal of Polymers and the Environment, 2013, 21, 1-7.	2.4	46
99	Processing and dimensional changes of cement based composites reinforced with surface-treated cellulose fibres. Cement and Concrete Composites, 2013, 37, 68-75.	4.6	83
100	Improved durability of vegetable fiber reinforced cement composite subject to accelerated carbonation at early age. Cement and Concrete Composites, 2013, 42, 49-58.	4.6	119
101	Properties of an Amazonian vegetable fiber as a potential reinforcing material. Industrial Crops and Products, 2013, 47, 43-50.	2.5	20
102	Isocyanate-treated cellulose pulp and its effect on the alkali resistance and performance of fiber cement composites. Holzforschung, 2013, 67, 853-861.	0.9	29
103	Relation of transverse air permeability with physical properties in different compositions of sugarcane bagasse particleboards. Materials Research, 2013, 16, 150-157.	0.6	5
104	Técnicas multivariadas aplicadas à avaliação de resÃduos lignocelulósicos para a produção de bioenergia. Ciencia Florestal, 2013, 23, .	0.1	7
105	Correlações canônicas entre as caracterÃsticas quÃmicas e energéticas de resÃduos lignocelulósicos. Cerne, 2012, 18, 433-439.	0.9	16
106	Cellulose micro/nanofibres from Eucalyptus kraft pulp: Preparation and properties. Carbohydrate Polymers, 2012, 89, 80-88.	5.1	246
107	Impact of bleaching pine fibre on the fibre/cement interface. Journal of Materials Science, 2012, 47, 4167-4177.	1.7	47
108	Brazilian Lignocellulosic Wastes for Bioenergy Production: Characterization and Comparison with Fossil Fuels. BioResources, 2012, 8, .	0.5	47

#	Article	IF	CITATIONS
109	Thermal performance of sisal fiber-cement roofing tiles for rural constructions. Scientia Agricola, 2011, 68, 1-7.	0.6	17
110	Effects of natural weathering on microstructure and mineral composition of cementitious roofing tiles reinforced with fique fibre. Cement and Concrete Composites, 2011, 33, 225-232.	4.6	88
111	Hybrid Reinforcement of Sisal and Polypropylene Fibers in Cement-Based Composites. Journal of Materials in Civil Engineering, 2011, 23, 177-187.	1.3	39
112	Relação entre o poder calorÃfico superior e os componentes elementares e minerais da biomassa vegetal. Pesquisa Florestal Brasileira, 2011, 31, 113-122.	0.1	49
113	Eucalyptus pulp fibres as alternative reinforcement to engineered cement-based composites. Industrial Crops and Products, 2010, 31, 225-232.	2.5	96
114	Effect of accelerated carbonation on cementitious roofing tiles reinforced with lignocellulosic fibre. Construction and Building Materials, 2010, 24, 193-201.	3.2	115
115	Surface properties of eucalyptus pulp fibres as reinforcement of cement-based composites. Holzforschung, 2010, 64, .	0.9	7
116	Carbonatação acelerada efetuada nas primeiras idades em compósitos cimentÃcios reforçados com polpas celulósicas. Ambiente ConstruÃdo, 2010, 10, 233-246.	0.2	10
117	Effect of fibre morphology on flocculation of fibre–cement suspensions. Cement and Concrete Research, 2009, 39, 1017-1022.	4.6	37
118	Cellulose modified fibres in cement based composites. Composites Part A: Applied Science and Manufacturing, 2009, 40, 2046-2053.	3.8	166
119	Sisal organosolv pulp as reinforcement for cement based composites. Materials Research, 2009, 12, 305-314.	0.6	20
120	Desempenho de telhas de escória de alto forno e fibras vegetais em protótipos de galpões. Revista Brasileira De Engenharia Agricola E Ambiental, 2008, 12, 536-539.	0.4	10
121	Performance and Durability of Cement Based Composites Reinforced with Refined Sisal Pulp. Materials and Manufacturing Processes, 2007, 22, 149-156.	2.7	81
122	Potential Use of Colloidal Silica in Cement Based Composites: Evaluation of the Mechanical Properties. Key Engineering Materials, 0, 517, 382-391.	0.4	5
123	Extruded Cement Based Composites Reinforced with Sugar Cane Bagasse Fibres. Key Engineering Materials, 0, 517, 450-457.	0.4	33
124	Processing Changes of Cement Based Composites Reinforced with Silane and Isocyanate Eucalyptus Modified Fibres. Key Engineering Materials, 0, 517, 437-449.	0.4	3
125	Lignocellulosic Composites Made from Agricultural and Forestry Wastes in Brazil. Key Engineering Materials, 0, 517, 556-563.	0.4	9
126	NaOH Treatment Impact in the Dimensional Stability of Banana Pseudostem Particleboard Panels. Key Engineering Materials, 0, 600, 447-451.	0.4	2

#	Article	IF	CITATIONS
127	Use of Castor Hull and Sugarcane Bagasse in Particulate Composites. Key Engineering Materials, 0, 668, 381-389.	0.4	1
128	Cementitious Composites Reinforced with Kraft Pulping Waste. Key Engineering Materials, 0, 668, 390-398.	0.4	7
129	Changes on structural characteristics of cellulose pulp fiber incubated for different times in anaerobic digestate. Cerne, 0, 27, .	0.9	5
130	Cellulose nanostructured films from pretreated açaÃ-mesocarp fibers: physical, barrier, and tensile performance. Cerne, 0, 27, .	0.9	4