Damjana Rozman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5506877/publications.pdf

Version: 2024-02-01

102 papers

3,755 citations

34 h-index 149479 56 g-index

106 all docs

106
does citations

106 times ranked 5599 citing authors

#	Article	IF	CITATIONS
1	Matching mouse models to specific human liver disease states by comparative functional genomics of mouse and human datasets. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2022, 1865, 194785.	0.9	1
2	Detecting gene–gene interactions from GWAS using diffusion kernel principal components. BMC Bioinformatics, 2022, 23, 57.	1.2	3
3	Integration of omics data to generate and analyse COVID-19 specific genome-scale metabolic models. Computers in Biology and Medicine, 2022, 145, 105428.	3.9	5
4	The role of bile acids in carcinogenesis. Cellular and Molecular Life Sciences, 2022, 79, 243.	2.4	73
5	Cholesterol, lipoproteins, and COVID-19: Basic concepts and clinical applications. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158849.	1.2	88
6	Pyridylethanol(phenylethyl)amines are non-azole, highly selective Candida albicans sterol 14α-demethylase inhibitors. Bioorganic Chemistry, 2021, 106, 104472.	2.0	4
7	Guided extraction of genome-scale metabolic models for the integration and analysis of omics data. Computational and Structural Biotechnology Journal, 2021, 19, 3521-3530.	1.9	11
8	Common Transcriptional Program of Liver Fibrosis in Mouse Genetic Models and Humans. International Journal of Molecular Sciences, 2021, 22, 832.	1.8	4
9	An Early Stage Researcher's Primer on Systems Medicine Terminology. Network and Systems Medicine, 2021, 4, 2-50.	2.7	9
10	Escherichia coli Affects Expression of Circadian Clock Genes in Human Hepatoma Cells. Microorganisms, 2021, 9, 869.	1.6	8
11	Sex-dependent dynamics of metabolism in primary mouse hepatocytes. Archives of Toxicology, 2021, 95, 3001-3013.	1.9	9
12	Identification of Variants Associated With Rare Hematological Disorder Erythrocytosis Using Targeted Next-Generation Sequencing Analysis. Frontiers in Genetics, 2021, 12, 689868.	1.1	5
13	Identification of Novel RNA Binding Proteins Influencing Circular RNA Expression in Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2021, 22, 7477.	1.8	5
14	From Whole Liver to Single Cell Transcriptomics in Sex-Dependent Liver Pathologies., 2021,, 234-243.		0
15	Chronic Disruption of the Late Cholesterol Synthesis Leads to Female-Prevalent Liver Cancer. Cancers, 2020, 12, 3302.	1.7	8
16	Network and Systems Medicine: Position Paper of the European Collaboration on Science and Technology Action on Open Multiscale Systems Medicine. Network and Systems Medicine, 2020, 3, 67-90.	2.7	18
17	Simplified LC-MS Method for Analysis of Sterols in Biological Samples. Molecules, 2020, 25, 4116.	1.7	12
18	Regulation of cytochrome P450 enzyme activity and expression by nitric oxide in the context of inflammatory disease. Drug Metabolism Reviews, 2020, 52, 455-471.	1.5	19

#	Article	IF	CITATIONS
19	Novel insights into biological roles of inducible cAMP early repressor ICER. Biochemical and Biophysical Research Communications, 2020, 530, 396-401.	1.0	3
20	Recent Advances in Systems and Network Medicine: Meeting Report from the First International Conference in Systems and Network Medicine. Systems Medicine (New Rochelle, N Y), 2020, 3, 22-35.	1.4	7
21	Sterols from the Post-Lanosterol Part of Cholesterol Synthesis: Novel Signaling Players. , 2020, , 1-22.		3
22	Oxysterols and Gastrointestinal Cancers Around the Clock. Frontiers in Endocrinology, 2019, 10, 483.	1.5	23
23	Tick-tock hedgehog-mutual crosstalk with liver circadian clock promotes liver steatosis. Journal of Hepatology, 2019, 70, 1192-1202.	1.8	18
24	The Association of Polymorphisms in Circadian Clock and Lipid Metabolism Genes With 2nd Trimester Lipid Levels and Preterm Birth. Frontiers in Genetics, 2019, 10, 540.	1.1	11
25	Community effort endorsing multiscale modelling, multiscale data science and multiscale computing for systems medicine. Briefings in Bioinformatics, 2019, 20, 1057-1062.	3.2	15
26	Personalized therapy when tackling nonalcoholic fatty liver disease: a focus on sex, genes, and drugs. Expert Opinion on Drug Metabolism and Toxicology, 2018, 14, 831-841.	1.5	20
27	LiverSex Computational Model: Sexual Aspects in Hepatic Metabolism and Abnormalities. Frontiers in Physiology, 2018, 9, 360.	1.3	49
28	Meta-Analysis and Experimental Validation Identified FREM2 and SPRY1 as New Glioblastoma Marker Candidates. International Journal of Molecular Sciences, 2018, 19, 1369.	1.8	11
29	Disrupting Hepatocyte Cyp51 from Cholesterol Synthesis Leads to Progressive Liver Injury in the Developing Mouse and Decreases RORC Signalling. Scientific Reports, 2017, 7, 40775.	1.6	26
30	Differential lactate and cholesterol synthetic activities in XY and XX Sertoli cells. Scientific Reports, 2017, 7, 41912.	1.6	4
31	Largeâ€scale computational models of liver metabolism: How far from the clinics?. Hepatology, 2017, 66, 1323-1334.	3.6	21
32	Rosuvastatin and Atorvastatin Are Ligands of the Human Constitutive Androstane Receptor/Retinoid X Receptor $\langle i \rangle \hat{l} \pm \langle j \rangle$ Complex. Drug Metabolism and Disposition, 2017, 45, 974-976.	1.7	11
33	Computational modelling of genome-scale metabolic networks and its application to CHO cell cultures. Computers in Biology and Medicine, 2017, 88, 150-160.	3.9	24
34	Evaluation of Selected CYP51A1 Polymorphisms in View of Interactions with Substrate and Redox Partner. Frontiers in Pharmacology, 2017, 8, 417.	1.6	7
35	Pharmacogenomic and personalized approaches to tackle nonalcoholic fatty liver disease. Pharmacogenomics, 2016, 17, 1273-1288.	0.6	13
36	Cytochrome P450 metabolism of the post-lanosterol intermediates explains enigmas of cholesterol synthesis. Scientific Reports, 2016, 6, 28462.	1.6	31

#	Article	IF	CITATIONS
37	Mouse genotypes drive the liver and adrenal gland clocks. Scientific Reports, 2016, 6, 31955.	1.6	4
38	Training in Systems Approaches for the Next Generation of Life Scientists and Medical Doctors. Methods in Molecular Biology, 2016, 1386, 73-86.	0.4	6
39	Targeting Signalling Pathways in Hepatocellular carcinoma. Current Pharmaceutical Design, 2016, 22, 1-1.	0.9	21
40	Effects of Flavonoids from Food and Dietary Supplements on Glial and Glioblastoma Multiforme Cells. Molecules, 2015, 20, 19406-19432.	1.7	41
41	Identification of Natural ROR \hat{I}^3 Ligands that Regulate the Development of Lymphoid Cells. Cell Metabolism, 2015, 21, 286-298.	7.2	193
42	Lessons from Hepatocyte-Specific Cyp51 Knockout Mice: Impaired Cholesterol Synthesis Leads to Oval Cell-Driven Liver Injury. Scientific Reports, 2015, 5, 8777.	1.6	30
43	SteatoNet: The First Integrated Human Metabolic Model with Multi-layered Regulation to Investigate Liver-Associated Pathologies. PLoS Computational Biology, 2014, 10, e1003993.	1.5	17
44	From Nonalcoholic Fatty Liver Disease to Hepatocellular Carcinoma: A Systems Understanding. Digestive Diseases and Sciences, 2014, 59, 238-241.	1.1	21
45	Timing of circadian genes in mammalian tissues. Scientific Reports, 2014, 4, 5782.	1.6	97
46	Hidden Disease Susceptibility and Sexual Dimorphism in the Heterozygous Knockout of Cyp51 from Cholesterol Synthesis. PLoS ONE, 2014, 9, e112787.	1.1	9
47	Genomic aspects of NAFLD pathogenesis. Genomics, 2013, 102, 84-95.	1.3	80
48	Circadian events in human diseases and in cytochrome P450â€related drug metabolism and therapy. IUBMB Life, 2013, 65, 487-496.	1.5	35
49	An algorithm for rapid computational construction of metabolic networks: A cholesterol biosynthesis example. Computers in Biology and Medicine, 2013, 43, 471-480.	3.9	11
50	Sterols in spermatogenesis and sperm maturation. Journal of Lipid Research, 2013, 54, 20-33.	2.0	92
51	The Interplay between Circadian System, Cholesterol Synthesis, and Steroidogenesis Affects Various Aspects of Female Reproduction. Frontiers in Endocrinology, 2013, 4, 111.	1.5	30
52	Inducible cAMP Early Repressor Regulates the Period 1 Gene of the Hepatic and Adrenal Clocks. Journal of Biological Chemistry, 2013, 288, 10318-10327.	1.6	10
53	Male germ cell-specific knockout of cholesterogenic cytochrome P450 lanosterol 14α-demethylase (Cyp51). Journal of Lipid Research, 2013, 54, 1653-1661.	2.0	19
54	Molecular Interactions between NAFLD and Xenobiotic Metabolism. Frontiers in Genetics, 2013, 4, 2.	1.1	55

#	Article	IF	CITATIONS
55	Steroidal Triterpenes of Cholesterol Synthesis. Molecules, 2013, 18, 4002-4017.	1.7	49
56	Sex Differences in the Hepatic Cholesterol Sensing Mechanisms in Mice. Molecules, 2013, 18, 11067-11085.	1.7	37
57	Polymorphisms of CYP51A1 from Cholesterol Synthesis: Associations with Birth Weight and Maternal Lipid Levels and Impact on CYP51 Protein Structure. PLoS ONE, 2013, 8, e82554.	1.1	24
58	Low nucleotide variability of CYP51A1 in humans: meta-analysis of cholesterol and bile acid synthesis and xenobiotic metabolism pathways. Acta Chimica Slovenica, 2013, 60, 875-83.	0.2	4
59	Circadian Regulation of the Hepatic Endobiotic and Xenobitoic Detoxification Pathways: The Time Matters. Chemical Research in Toxicology, 2012, 25, 811-824.	1.7	79
60	Circadian expression of steroidogenic cytochromesâ€fP450 in the mouse adrenal glandâ€f–â€finvolvement of cAMPâ€responsive element modulator in epigenetic regulation of <i>Cyp17a1</i> . FEBS Journal, 2012, 279, 1584-1593.	2.2	26
61	Cytochrome P450s in the synthesis of cholesterol and bile acids – from mouse models to human diseases. FEBS Journal, 2012, 279, 1516-1533.	2.2	165
62	Novel Insights into the Downstream Pathways and Targets Controlled by Transcription Factors CREM in the Testis. PLoS ONE, 2012, 7, e31798.	1.1	42
63	The Interplay of cis-Regulatory Elements Rules Circadian Rhythms in Mouse Liver. PLoS ONE, 2012, 7, e46835.	1.1	68
64	Defects in cholesterol synthesis genes in mouse and in humans: lessons for drug development and safer treatments. Drug Metabolism Reviews, 2011, 43, 69-90.	1.5	62
65	Circadian rhythm of cholesterol synthesis in mouse liver: A statistical analysis of the post-squalene metabolites in wild-type and Crem-knock-out mice. Biochemical and Biophysical Research Communications, 2011, 408, 635-641.	1.0	9
66	The human primary hepatocyte transcriptome reveals novel insights into atorvastatin and rosuvastatin action. Pharmacogenetics and Genomics, 2011, 21, 741-750.	0.7	28
67	Interplay between cholesterol and drug metabolism. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 146-160.	1.1	58
68	Mouse Knockout of the Cholesterogenic Cytochrome P450 Lanosterol 14α-Demethylase (Cyp51) Resembles Antley-Bixler Syndrome. Journal of Biological Chemistry, 2011, 286, 29086-29097.	1.6	83
69	Inhibition of Human Sterol Î" ⁷ -Reductase and Other Postlanosterol Enzymes by LK-980, a Novel Inhibitor of Cholesterol Synthesis. Drug Metabolism and Disposition, 2011, 39, 39-46.	1.7	11
70	Nonalcoholic Fatty Liver Disease: Focus on Lipoprotein and Lipid Deregulation. Journal of Lipids, 2011, 2011, 1-14.	1.9	164
71	Perspectives of the non-statin hypolipidemic agents., 2010, 127, 19-40.		80
72	Acrolein consumption induces systemic dyslipidemia and lipoprotein modification. Toxicology and Applied Pharmacology, 2010, 243, 1-12.	1.3	74

#	Article	IF	Citations
73	Determination of reference genes for circadian studies in different tissues and mouse strains. BMC Molecular Biology, 2010, 11, 60.	3.0	88
74	Adaptation of cholesterol synthesis to fasting and TNF-α: Profiling cholesterol intermediates in the liver, brain, and testis. Journal of Steroid Biochemistry and Molecular Biology, 2010, 121, 619-625.	1.2	19
75	Drug Interaction Potential of 2-((3,4-Dichlorophenethyl)(propyl)amino)-1-(pyridin-3-yl)ethanol (LK-935), the Novel Nonstatin-Type Cholesterol-Lowering Agent. Drug Metabolism and Disposition, 2009, 37, 375-385.	1.7	21
76	Effect of CAR activation on selected metabolic pathways in normal and hyperlipidemic mouse livers. BMC Genomics, 2009, 10, 384.	1.2	49
77	Combined gas chromatographic/mass spectrometric analysis of cholesterol precursors and plant sterols in cultured cells. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 2081-2086.	1.2	75
78	Novel cholesterol biosynthesis inhibitors targeting human lanosterol 14α-demethylase (CYP51). Bioorganic and Medicinal Chemistry, 2008, 16, 209-221.	1.4	40
79	Expression of microsomal lanosterol 14î±-demethylase (CYP51) in an engineered soluble monomeric form. Biochemical and Biophysical Research Communications, 2008, 371, 855-859.	1.0	5
80	CREM modulates the circadian expression of CYP51, HMGCR and cholesterogenesis in the liver. Biochemical and Biophysical Research Communications, 2008, 376, 206-210.	1.0	35
81	TNF-α interferes with lipid homeostasis and activates acute and proatherogenic processes. Physiological Genomics, 2007, 31, 216-227.	1.0	51
82	Mammalian cytochromes P450—Importance of tissue specificity. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 458-466.	1.1	123
83	Cholesterogenic Lanosterol 14α-Demethylase (CYP51) Is an Immediate Early Response Gene. Endocrinology, 2005, 146, 5321-5331.	1.4	28
84	Pre-cholesterol precursors in gametogenesis. Molecular and Cellular Endocrinology, 2005, 234, 47-56.	1.6	26
85	New Aspects on Lanosterol 14α-Demethylase and Cytochrome P450 Evolution: Lanosterol/Cycloartenol Diversification and Lateral Transfer. Journal of Molecular Evolution, 2004, 59, 51-58.	0.8	45
86	Many facets of mammalian lanosterol $14\hat{l}_{\pm}$ -demethylase from the evolutionarily conserved cytochrome P450 family CYP51. Archives of Biochemistry and Biophysics, 2003, 409, 159-171.	1.4	97
87	Lanosterol metabolism and sterol regulatory element binding protein (SREBP) expression in male germ cell maturation. Journal of Steroid Biochemistry and Molecular Biology, 2003, 85, 429-438.	1.2	19
88	A cAMP-Responsive Element Binding Site Is Essential for Sterol Regulation of the Human Lanosterol 14α-Demethylase Gene (CYP51). Molecular Endocrinology, 2002, 16, 1853-1863.	3.7	51
89	Tissue-specific transcriptional regulation of the cholesterol biosynthetic pathway leads to accumulation of testis meiosis-activating sterol (T-MAS). Journal of Lipid Research, 2002, 43, 82-9.	2.0	32
90	Localisation of lanosterol 14Î ⁻ demethylase in round and elongated spermatids of the mouse testis: an immunoelectron microscopic and stereological study. Pflugers Archiv European Journal of Physiology, 2001, 442, r167-r168.	1.3	7

#	Article	IF	CITATIONS
91	New steroid 5Î-reductase type I (SRD5A1) homologous sequences on human chromosomes 6 and 8. Pflugers Archiv European Journal of Physiology, 2001, 442, r187-r189.	1.3	3
92	Molecular cloning and partial characterisation of the mouse Cyp51 cDNA. Pflugers Archiv European Journal of Physiology, 2000, 439, r007-r008.	1.3	1
93	Characterization of the Mouse Lanosterol 14î±-Demethylase (CYP51), a New Member of the Evolutionarily Most Conserved Cytochrome P450 Family. Archives of Biochemistry and Biophysics, 2000, 379, 37-45.	1.4	29
94	Molecular cloning and partial characterisation of the mouse Cyp51 cDNA. Pflugers Archiv European Journal of Physiology, 2000, 439, R7-R8.	1.3	0
95	Cyclic Adenosine 3′,5′-Monophosphate(cAMP)/cAMP-Responsive Element Modulator (CREM)-Dependent Regulation of Cholesterogenic Lanosterol 14α-Demethylase (CYP51) in Spermatids. Molecular Endocrinology, 1999, 13, 1951-1962.	3.7	68
96	Characteristics of the heterologously expressed human lanosterol $14\hat{i}_{\pm}$ -demethylase (other names:) Tj ETQq0 0 0 antifungal agents., 1999, 15, 755-763.) rgBT /Ov	erlock 10 Tf 5 72
97	Elevated Expression of Lanosterol 14α-Demethylase (CYP51) and the Synthesis of Oocyte Meiosis-Activating Sterols in Postmeiotic Germ Cells of Male Rats1. Endocrinology, 1998, 139, 2314-2321.	1.4	51
98	Structure and Mapping of the Human Lanosterol 14α- Demethylase Gene (CYP51) Encoding the Cytochrome P450 Involved in Cholesterol Biosynthesis; Comparison of Exon/Intron Organization with other Mammalian and Fungal CYP Genes. Genomics, 1996, 38, 371-381.	1.3	86
99	The Ubiquitously Expressed Human CYP51 Encodes Lanosterol 14α-Demethylase, a Cytochrome P450 Whose Expression Is Regulated by Oxysterols. Archives of Biochemistry and Biophysics, 1996, 329, 73-81.	1.4	162
100	The Three Human Cytochrome P450 Lanosterol 14α-Demethylase (CYP51) Genes Reside on Chromosomes 3, 7, and 13: Structure of the Two Retrotransposed Pseudogenes, Association with a Line-1 Element, and Evolution of the Human CYP51 Family. Archives of Biochemistry and Biophysics, 1996, 333, 466-474.	1.4	33
101	Ultrastructure and genotypic characterization of the filamentous fungusCochliobolus lunatusin comparison to the anamorphic strainCurvularia lunata. FEMS Microbiology Letters, 1994, 117, 35-40.	0.7	3
102	Morphological changes and induced sporulation in HmBR transformants of Cochliobolus lunatus. Current Microbiology, 1991, 23, 303-306.	1.0	2