
## Xesús Nogueira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5506408/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | An arbitrary Lagrangian-Eulerian SPH-MLS method for the computation of compressible viscous flows.<br>Journal of Computational Physics, 2022, 464, 111172.                                                                         | 3.8  | 7         |
| 2  | UCNS3D: An open-source high-order finite-volume unstructured CFD solver. Computer Physics Communications, 2022, 279, 108453.                                                                                                       | 7.5  | 25        |
| 3  | A reduced-dissipation WENO scheme with automatic dissipation adjustment. Journal of Computational Physics, 2021, 425, 109749.                                                                                                      | 3.8  | 12        |
| 4  | SPH-ALE Scheme for Weakly Compressible Viscous Flow with a Posteriori Stabilization. Water (Switzerland), 2021, 13, 245.                                                                                                           | 2.7  | 7         |
| 5  | A Well-Balanced SPH-ALE Scheme for Shallow Water Applications. Journal of Scientific Computing, 2021, 88, 1.                                                                                                                       | 2.3  | 3         |
| 6  | A high-order finite volume method with improved isotherms reconstruction for the computation of<br>multiphase flows using the Navier–Stokes–Korteweg equations. Computers and Mathematics With<br>Applications, 2020, 79, 673-696. | 2.7  | 2         |
| 7  | An a posteriori-implicit turbulent model with automatic dissipation adjustment for Large Eddy<br>Simulation of compressible flows. Computers and Fluids, 2020, 197, 104371.                                                        | 2.5  | 7         |
| 8  | Very high-order method on immersed curved domains for finite difference schemes with regular<br>Cartesian grids. Computer Methods in Applied Mechanics and Engineering, 2020, 360, 112782.                                         | 6.6  | 15        |
| 9  | Improved δ-SPH Scheme with Automatic and Adaptive Numerical Dissipation. Water (Switzerland), 2020, 12, 2858.                                                                                                                      | 2.7  | 11        |
| 10 | Numerical assessment of fan blades screen effect on fan/OGV interaction tonal noise. Journal of<br>Sound and Vibration, 2020, 481, 115428.                                                                                         | 3.9  | 7         |
| 11 | WENO schemes on unstructured meshes using a relaxed a posteriori MOOD limiting approach.<br>Computer Methods in Applied Mechanics and Engineering, 2020, 363, 112921.                                                              | 6.6  | 28        |
| 12 | An a Posteriori Very Efficient Hybrid Method for Compressible Flows. Springer Tracts in Mechanical Engineering, 2019, , 137-148.                                                                                                   | 0.3  | 0         |
| 13 | A Higher-Order Chimera Method Based on Moving Least Squares. Springer Tracts in Mechanical Engineering, 2019, , 73-82.                                                                                                             | 0.3  | 0         |
| 14 | Smoothed Particle Hydrodynamics: A consistent model for interfacial multiphase fluid flow simulations. Journal of Computational Physics, 2018, 358, 53-87.                                                                         | 3.8  | 56        |
| 15 | An a posteriori, efficient, high-spectral resolution hybrid finite-difference method for compressible flows. Computer Methods in Applied Mechanics and Engineering, 2018, 335, 91-127.                                             | 6.6  | 19        |
| 16 | A Higher-Order Chimera Method for Finite Volume Schemes. Archives of Computational Methods in<br>Engineering, 2018, 25, 691-706.                                                                                                   | 10.2 | 17        |
| 17 | A very accurate Arbitrary Lagrangian–Eulerian meshless method for Computational Aeroacoustics.<br>Computer Methods in Applied Mechanics and Engineering, 2018, 342, 116-141.                                                       | 6.6  | 12        |
| 18 | Multiphase smoothed particle hydrodynamics approach for modeling soil–water interactions.<br>Advances in Water Resources, 2018, 121, 189-205.                                                                                      | 3.8  | 16        |

Xesús Nogueira

| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | High-accurate SPH method with Multidimensional Optimal Order Detection limiting. Computer Methods in Applied Mechanics and Engineering, 2016, 310, 134-155.                                                                              | 6.6  | 34        |
| 20 | An immersed boundary method for unstructured meshes in depth averaged shallow water models.<br>International Journal for Numerical Methods in Fluids, 2016, 81, 672-688.                                                                 | 1.6  | 16        |
| 21 | A high-order density-based finite volume method for the computation of all-speed flows. Computer<br>Methods in Applied Mechanics and Engineering, 2016, 298, 229-251.                                                                    | 6.6  | 17        |
| 22 | A Moving Least Squares-Based High-Order-Preserving Sliding Mesh Technique with No Intersections.<br>Springer Tracts in Mechanical Engineering, 2015, , 27-36.                                                                            | 0.3  | 1         |
| 23 | Comprehensive Model for Fatigue Analysis of Flexible Pavements considering Effects of Dynamic Axle<br>Loads. Transportation Research Record, 2015, 2524, 110-118.                                                                        | 1.9  | 7         |
| 24 | New high-resolution-preserving sliding mesh techniques for higher-order finite volume schemes.<br>Computers and Fluids, 2015, 118, 114-130.                                                                                              | 2.5  | 37        |
| 25 | A new higher-order finite volume method based on Moving Least Squares for the resolution of the incompressible Navier–Stokes equations on unstructured grids. Computer Methods in Applied Mechanics and Engineering, 2014, 278, 883-901. | 6.6  | 28        |
| 26 | Accuracy assessment of a high-order moving least squares finite volume method for compressible flows. Computers and Fluids, 2013, 71, 41-53.                                                                                             | 2.5  | 20        |
| 27 | Experimental and computational modeling of oscillatory flow within a baffled tube containing periodic-tri-orifice baffle geometries. Computers and Chemical Engineering, 2013, 49, 1-17.                                                 | 3.8  | 31        |
| 28 | Moving Kriging reconstruction for high-order finite volume computation of compressible flows.<br>Computer Methods in Applied Mechanics and Engineering, 2013, 253, 463-478.                                                              | 6.6  | 9         |
| 29 | An unconditionally energy-stable method for the phase field crystal equation. Computer Methods in<br>Applied Mechanics and Engineering, 2012, 249-252, 52-61.                                                                            | 6.6  | 126       |
| 30 | A new space–time discretization for the Swift–Hohenberg equation that strictly respects the<br>Lyapunov functional. Communications in Nonlinear Science and Numerical Simulation, 2012, 17,<br>4930-4946.                                | 3.3  | 49        |
| 31 | Isogeometric shape sensitivity analysis. WIT Transactions on the Built Environment, 2012, , .                                                                                                                                            | 0.0  | 0         |
| 32 | High-Resolution Finite Volume Methods on Unstructured Grids for Turbulence and Aeroacoustics.<br>Archives of Computational Methods in Engineering, 2011, 18, 315-340.                                                                    | 10.2 | 13        |
| 33 | Toward a higher order unsteady finite volume solver based on reproducing kernel methods.<br>Computer Methods in Applied Mechanics and Engineering, 2011, 200, 2348-2362.                                                                 | 6.6  | 27        |
| 34 | Implicit large-Eddy simulation with a moving least squares-based finite volume method. IOP<br>Conference Series: Materials Science and Engineering, 2010, 10, 012235.                                                                    | 0.6  | 3         |
| 35 | On the simulation of wave propagation with a higher-order finite volume scheme based on<br>Reproducing Kernel Methods. Computer Methods in Applied Mechanics and Engineering, 2010, 199,<br>1471-1490.                                   | 6.6  | 27        |
| 36 | lsogeometric analysis of the isothermal Navier–Stokes–Korteweg equations. Computer Methods in<br>Applied Mechanics and Engineering, 2010, 199, 1828-1840.                                                                                | 6.6  | 191       |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Implicit Large Eddy Simulation of non-wall-bounded turbulent flows based on the multiscale<br>properties of a high-order finite volume method. Computer Methods in Applied Mechanics and<br>Engineering, 2010, 199, 615-624. | 6.6 | 12        |
| 38 | A new shock-capturing technique based on Moving Least Squares for higher-order numerical schemes<br>on unstructured grids. Computer Methods in Applied Mechanics and Engineering, 2010, 199, 2544-2558.                      | 6.6 | 283       |
| 39 | Resolution of computational aeroacoustics problems on unstructured grids with a higher-order finite volume scheme. Journal of Computational and Applied Mathematics, 2010, 234, 2089-2097.                                   | 2.0 | 19        |
| 40 | On the accuracy of finite volume and discontinuous Galerkin discretizations for compressible flow<br>on unstructured grids. International Journal for Numerical Methods in Engineering, 2009, 78,<br>1553-1584.              | 2.8 | 27        |
| 41 | A Higher-Order Finite Volume Method Using Multiresolution Reproducing Kernels. Lecture Notes in Computational Science and Engineering, 2008, , 157-171.                                                                      | 0.3 | 0         |
| 42 | Finite volume solvers and Moving Least-Squares approximations for the compressible Navier–Stokes<br>equations on unstructured grids. Computer Methods in Applied Mechanics and Engineering, 2007, 196,<br>4712-4736.         | 6.6 | 77        |