
Debdeep Mukhopadhyay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5506214/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	FlexiPair: An Automated Programmable Framework for Pairing Cryptosystems. IEEE Transactions on Computers, 2022, 71, 506-519.	2.4	2
2	3PAA: A <u>P</u> rivate <u>P</u> UF <u>P</u> rotocol for <u>A</u> nonymous <u>A</u> uthentication. IEEE Transactions on Information Forensics and Security, 2021, 16, 756-769.	4.5	25
3	Evolution of Fault Attacks on Cryptosystems. , 2021, , 1-7.		2
4	ORACALL: An Oracle-Based Attack on Cellular Automata Guided Logic Locking. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40, 2445-2454.	1.9	8
5	A survey on adversarial attacks and defences. CAAI Transactions on Intelligence Technology, 2021, 6, 25-45.	3.4	115
6	A Formal Analysis of Prefetching in Profiled Cache-Timing Attacks on Block Ciphers. Journal of Cryptology, 2021, 34, 1.	2.1	3
7	Introducing Recurrence in Strong PUFs for Enhanced Machine Learning Attack Resistance. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 11, 319-332.	2.7	19
8	SACReD: An Attack Framework on SAC Resistant Delay-PUFs leveraging Bias and Reliability Factors. , 2021, , .		4
9	Divided We Stand, United We Fall: Security Analysis of Some SCA+SIFA Countermeasures Against SCA-Enhanced Fault Template Attacks. Lecture Notes in Computer Science, 2021, , 62-94.	1.0	5
10	Design and Analysis of Logic Locking Techniques. , 2021, , .		1
11	Transform Without Encode is not Sufficient for SIFA and FTA Security: A Case Study. Lecture Notes in Computer Science, 2021, , 85-104.	1.0	1
12	A Framework to Counter Statistical Ineffective Fault Analysis of Block Ciphers Using Domain Transformation and Error Correction. IEEE Transactions on Information Forensics and Security, 2020, 15, 1905-1919.	4.5	30
13	Branch Prediction Attack on Blinded Scalar Multiplication. IEEE Transactions on Computers, 2020, 69, 633-648.	2.4	8
14	Fault Attack on SKINNY Cipher. Journal of Hardware and Systems Security, 2020, 4, 277-296.	0.8	3
15	ExplFrame: Exploiting Page Frame Cache for Fault Analysis of Block Ciphers. , 2020, , .		6
16	Fault Template Attacks on Block Ciphers Exploiting Fault Propagation. Lecture Notes in Computer Science, 2020, , 612-643.	1.0	29
17	Hardware Security in India: The Journey so Far. IITK Directions, 2020, , 71-96.	0.2	0

18 LoPher: SAT-Hardened Logic Embedding on Block Ciphers. , 2020, , .

15

#	Article	lF	CITATIONS
19	Faultless to a fault?. , 2020, , .		3
20	Building PUF Based Authentication and Key Exchange Protocol for IoT Without Explicit CRPs in Verifier Database. IEEE Transactions on Dependable and Secure Computing, 2019, 16, 424-437.	3.7	171
21	Power Efficiency of S-Boxes: From a Machine-Learning-Based Tool to a Deterministic Model. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27, 2829-2841.	2.1	2
22	A Machine Learning Based Approach to Predict Power Efficiency of S-Boxes. , 2019, , .		3
23	Count Your Toggles: a New Leakage Model for Pre-Silicon Power Analysis of Crypto Designs. Journal of Electronic Testing: Theory and Applications (JETTA), 2019, 35, 605-619.	0.9	8
24	High-Speed Implementation of ECC Scalar Multiplication in GF(p) for Generic Montgomery Curves. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27, 1587-1600.	2.1	33
25	An automated framework for exploitable fault identification in block ciphers. Journal of Cryptographic Engineering, 2019, 9, 203-219.	1.5	4
26	SCADFA: Combined SCA+DFA Attacks on Block Ciphers with Practical Validations. IEEE Transactions on Computers, 2019, 68, 1498-1510.	2.4	16
27	Guest Editorial: Special Section on Autonomous Intelligence for Security and Privacy Analytics. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27, 2703-2705.	2.1	0
28	Automatic Characterization of Exploitable Faults: A Machine Learning Approach. IEEE Transactions on Information Forensics and Security, 2019, 14, 954-968.	4.5	18
29	Performance, Security Tradeoffs in Secure Control. IEEE Embedded Systems Letters, 2019, 11, 102-105.	1.3	2
30	Lightweight Design-for-Security Strategies for Combined Countermeasures Against Side Channel and Fault Analysis in IoT Applications. Journal of Hardware and Systems Security, 2019, 3, 103-131.	0.8	16
31	Exploitable Fault Space Characterization: A Complementary Approach. , 2019, , 59-88.		0
32	The Conflicted Usage of RLUTs for Security-Critical Applications on FPGA. Journal of Hardware and Systems Security, 2018, 2, 162-178.	0.8	5
33	Online Detection and Reactive Countermeasure for Leakage from BPU Using TVLA. , 2018, , .		2
34	A Multiplexer-Based Arbiter PUF Composition with Enhanced Reliability and Security. IEEE Transactions on Computers, 2018, 67, 403-417.	2.4	108
35	Customized Instructions for Protection Against Memory Integrity Attacks. IEEE Embedded Systems Letters, 2018, 10, 91-94.	1.3	2

36 DFARPA: Differential fault attack resistant physical design automation. , 2018, , .

11

6

#	Article	IF	CITATIONS
37	PUFSSL: An OpenSSL Extension for PUF based Authentication. , 2018, , .		9
38	BLIC: A Blockchain Protocol for Manufacturing and Supply Chain Management of ICS. , 2018, , .		8
39	Breaking Redundancy-Based Countermeasures with Random Faults and Power Side Channel. , 2018, , .		10
40	Revisiting FPGA Implementation of Montgomery Multiplier in Redundant Number System for Efficient ECC Application in GF(p). , 2018, , .		7
41	Minimalistic Perspective to Public Key Implementations on FPGA. , 2018, , .		1
42	Trustworthy proofs for sensor data using FPGA based physically unclonable functions. , 2018, , .		9
43	Construction of Rotation Symmetric S-Boxes with High Nonlinearity and Improved DPA Resistivity. IEEE Transactions on Computers, 2017, 66, 59-72.	2.4	14
44	A Combined Power and Fault Analysis Attack on Protected Grain Family of Stream Ciphers. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2017, 36, 1968-1977.	1.9	10
45	Formal fault analysis of branch predictors: attacking countermeasures of asymmetric key ciphers. Journal of Cryptographic Engineering, 2017, 7, 299-310.	1.5	7
46	A PUF-Based Secure Communication Protocol for IoT. Transactions on Embedded Computing Systems, 2017, 16, 1-25.	2.1	132
47	Fault Space Transformation: A Generic Approach to Counter Differential Fault Analysis and Differential Fault Intensity Analysis on AES-Like Block Ciphers. IEEE Transactions on Information Forensics and Security, 2017, 12, 1092-1102.	4.5	28
48	An Evaluation of Lightweight Block Ciphers for Resource-Constrained Applications: Area, Performance, and Security. Journal of Hardware and Systems Security, 2017, 1, 203-218.	0.8	15
49	Fault Tolerant Infective Countermeasure for AES. Journal of Hardware and Systems Security, 2017, 1, 3-17.	0.8	25
50	Provably Secure Key-Aggregate Cryptosystems with Broadcast Aggregate Keys for Online Data Sharing on the Cloud. IEEE Transactions on Computers, 2017, 66, 891-904.	2.4	36
51	Opening pandora's box: Implication of RLUT on secure FPGA applications and IP security. , 2017, , .		1
52	A Practical Fault Attack on ARX-Like Ciphers with a Case Study on ChaCha20. , 2017, , .		15
53	Editorial for the Special Issue in Journal of Hardware and Systems Security (HaSS) Based on Selected Papers from 6th International Conference on Security, Privacy and Applied Cryptographic Engineering (SPACE 2016). Journal of Hardware and Systems Security, 2017, 1, 201-202.	0.8	0

54 Shuffling across rounds: A lightweight strategy to counter side-channel attacks. , 2016, , .

4

#	Article	lF	CITATIONS
55	Secure public key hardware for IoT applications. , 2016, , .		3
56	SmashClean: A hardware level mitigation to stack smashing attacks in OpenRISC. , 2016, , .		6
57	Accelerating OpenSSL's ECC with low cost reconfigurable hardware. , 2016, , .		2
58	Inner collisions in ECC: Vulnerabilities of complete addition formulas for NIST curves. , 2016, , .		5
59	Using Tweaks to Design Fault Resistant Ciphers. , 2016, , .		8
60	A Practical Template Attack on MICKEY-128 2.0 Using PSO Generated IVs and LS-SVM. , 2016, , .		2
61	Template attack on SPA and FA resistant implementation of Montgomery ladder. IET Information Security, 2016, 10, 245-251.	1.1	3
62	Testability Based Metric for Hardware Trojan Vulnerability Assessment. , 2016, , .		10
63	Parsimonious design strategy for linear layers with high diffusion in block ciphers. , 2016, , .		0
64	From theory to practice of private circuit: A cautionary note. , 2015, , .		18
65	Improved Practical Differential Fault Analysis of Grain-128. , 2015, , .		15
66	Reaching the Limit of Nonprofiling DPA. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34, 915-927.	1.9	10
67	Construction of RSBFs with improved cryptographic properties to resist differential fault attack on grain family of stream ciphers. Cryptography and Communications, 2015, 7, 35-69.	0.9	1
68	Micro-Architectural Analysis of Time-Driven Cache Attacks: Quest for the Ideal Implementation. IEEE Transactions on Computers, 2015, 64, 778-790.	2.4	10
69	A Case of Lightweight PUF Constructions: Cryptanalysis and Machine Learning Attacks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34, 1334-1343.	1.9	64
70	A practical DPA on Grain v1 using LS-SVM. , 2015, , .		5
71	Security analysis of concurrent error detection against differential fault analysis. Journal of Cryptographic Engineering, 2015, 5, 153-169.	1.5	61
72	A Biased Fault Attack on the Time Redundancy Countermeasure for AES. Lecture Notes in Computer Science, 2015, , 189-203.	1.0	41

#	Article	IF	CITATIONS
73	Who Watches the Watchmen?: Utilizing Performance Monitors for Compromising Keys of RSA on Intel Platforms. Lecture Notes in Computer Science, 2015, , 248-266.	1.0	38
74	Circuits and Synthesis Mechanism for Hardware Design to Counter Power Analysis Attacks. , 2014, , .		2
75	DRECON: DPA Resistant Encryption by Construction. Lecture Notes in Computer Science, 2014, , 420-439.	1.0	12
76	Theoretical Modeling of Elliptic Curve Scalar Multiplier on LUT-Based FPGAs for Area and Speed. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2013, 21, 901-909.	2.1	46
77	Design and implementation of rotation symmetric S-boxes with high nonlinearity and high DPA resilience. , 2013, , .		17
78	Improved Differential Fault Analysis of CLEFIA. , 2013, , .		11
79	Differential fault analysis of AES: towards reaching its limits. Journal of Cryptographic Engineering, 2013, 3, 73-97.	1.5	41
80	Secure Dual-Core Cryptoprocessor for Pairings Over Barreto-Naehrig Curves on FPGA Platform. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2013, 21, 434-442.	2.1	18
81	On-line testing for differential fault attacks in cryptographic circuits. , 2013, , .		Ο
82	Formalizing the Effect of Feistel Cipher Structures on Differential Cache Attacks. IEEE Transactions on Information Forensics and Security, 2013, 8, 1274-1279.	4.5	9
83	Designing DPA Resistant Circuits Using BDD Architecture and Bottom Pre-charge Logic. , 2013, , .		3
84	Constrained Search for a Class of Good Bijective \$S\$-Boxes With Improved DPA Resistivity. IEEE Transactions on Information Forensics and Security, 2013, 8, 2154-2163.	4.5	41
85	Hardware Prefetchers Leak: A Revisit of SVF for Cache-Timing Attacks. , 2012, , .		14
86	A Parallel Architecture for Koblitz Curve Scalar Multiplications on FPGA Platforms. , 2012, , .		9
87	Design for Security of Block Cipher S-Boxes to Resist Differential Power Attacks. , 2012, , .		10
88	Testability of Cryptographic Hardware and Detection of Hardware Trojans. , 2011, , .		4
89	Petrel: Power and Timing Attack Resistant Elliptic Curve Scalar Multiplier Based on Programmable \${m GF}(p)\$ Arithmetic Unit. IEEE Transactions on Circuits and Systems I: Regular Papers, 2011, 58, 1798-1812.	3.5	53
90	Revisiting the Itoh-Tsujii Inversion Algorithm for FPGA Platforms. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2011, 19, 1508-1512.	2.1	41

#	Article	IF	CITATIONS
91	A Parallel Efficient Architecture for Large Cryptographically Robust n × k (k>n/2) Mappings. IEEE Transactions on Computers, 2011, 60, 375-385.	2.4	10
92	Multi-level attacks: An emerging security concern for cryptographic hardware. , 2011, , .		24
93	Differential Fault Analysis of the Advanced Encryption Standard Using a Single Fault. Lecture Notes in Computer Science, 2011, , 224-233.	1.0	166
94	High speed F <inf>p</inf> multipliers and adders on FPGA platform. , 2010, , .		10
95	High Speed Flexible Pairing Cryptoprocessor on FPGA Platform. Lecture Notes in Computer Science, 2010, , 450-466.	1.0	20
96	Pinpointing Cache Timing Attacks on AES. , 2010, , .		19
97	Fault based attack of the Rijndael cryptosystem. Journal of Discrete Mathematical Sciences and Cryptography, 2007, 10, 267-290.	0.5	1
98	Preventing the Side-Channel Leakage of Masked AES S-Box. , 2007, , .		2
99	Hierarchical Verification of Galois Field Circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2007, 26, 1893-1898.	1.9	12
100	Secured Flipped Scan-Chain Model for Crypto-Architecture. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2007, 26, 2080-2084.	1.9	104
101	An Efficient Design of Cellular Automata Based Cryptographically Robust One-Way Function. , 2007, , .		3
102	Lightweight and Side-channel Secure 4 × 4 S-Boxes from Cellular Automata Rules. IACR Transactions on Symmetric Cryptology, 0, , 311-334.	0.0	12
103	PAKAMAC: A PUF-based Keyless Automotive Entry System with Mutual Authentication. Journal of Hardware and Systems Security, 0, , .	0.8	0