Maria Angeles Martin Prats

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5506194/publications.pdf

Version: 2024-02-01

35 papers 6,651 citations

11 h-index

840585

713332 21 g-index

35 all docs

35 docs citations

35 times ranked 4734 citing authors

#	Article	IF	CITATIONS
1	Reducing Conducted Emissions at the Output of Full-Bridge DCDC Converters with High Voltage Steps. Electronics (Switzerland), 2021, 10, 1373.	1.8	O
2	Improving Performance of Compact EMI Filters by Using Metallic and Ferrite Sheets. IEEE Transactions on Power Electronics, 2021, 36, 9057-9068.	5.4	8
3	Overcoming the Effect of Test Fixtures on the Measurement of Parasitics of Capacitors and Inductors. IEEE Transactions on Power Electronics, 2020, 35, 15-19.	5.4	8
4	A Survey on Bidirectional DC/DC Power Converter Topologies for the Future Hybrid and All Electric Aircrafts. Energies, 2020, 13, 4883.	1.6	11
5	Simple Setup for Measuring the Response to Differential Mode Noise of Common Mode Chokes. Electronics (Switzerland), 2020, 9, 381.	1.8	6
6	High Technology Readiness Level Techniques for Brushless Direct Current Motors Failures Detection: A Systematic Review. Energies, 2020, 13, 1573.	1.6	1
7	Smart Shielding Techniques for Common Mode Chokes in EMI Filters. IEEE Transactions on Electromagnetic Compatibility, 2019, 61, 1329-1336.	1.4	11
8	Failure Detection by Signal Similarity Measurement of Brushless DC Motors. Energies, 2019, 12, 1364.	1.6	7
9	Characterization of Three-Phase Common-Mode Chokes at High Frequencies. IEEE Transactions on Power Electronics, 2018, 33, 6471-6475.	5.4	5
10	The PERSEUS Project to Promote Excellence in Aerospace Education. , 2017, , .		1
10	The PERSEUS Project to Promote Excellence in Aerospace Education., 2017,,. Spacecraft magnetic attitude control using approximating sequence Riccati equations. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51, 3374-3385.	2.6	19
	Spacecraft magnetic attitude control using approximating sequence Riccati equations. IEEE	2.6	
11	Spacecraft magnetic attitude control using approximating sequence Riccati equations. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51, 3374-3385. Model Based Adaptive Direct Power Control for Three-Level NPC Converters. IEEE Transactions on		19
11 12	Spacecraft magnetic attitude control using approximating sequence Riccati equations. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51, 3374-3385. Model Based Adaptive Direct Power Control for Three-Level NPC Converters. IEEE Transactions on Industrial Informatics, 2013, 9, 1148-1157. Design of a Middleware Interface for ARINC 429 Data Bus. IEEE Transactions on Aerospace and	7.2	19 85
11 12 13	Spacecraft magnetic attitude control using approximating sequence Riccati equations. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51, 3374-3385. Model Based Adaptive Direct Power Control for Three-Level NPC Converters. IEEE Transactions on Industrial Informatics, 2013, 9, 1148-1157. Design of a Middleware Interface for ARINC 429 Data Bus. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48, 1136-1149. Multilevel Converters: An Enabling Technology for High-Power Applications. Proceedings of the IEEE,	7.2 2.6	19 85 4
11 12 13	Spacecraft magnetic attitude control using approximating sequence Riccati equations. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51, 3374-3385. Model Based Adaptive Direct Power Control for Three-Level NPC Converters. IEEE Transactions on Industrial Informatics, 2013, 9, 1148-1157. Design of a Middleware Interface for ARINC 429 Data Bus. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48, 1136-1149. Multilevel Converters: An Enabling Technology for High-Power Applications. Proceedings of the IEEE, 2009, 97, 1786-1817.	7.2 2.6	19 85 4 970
11 12 13 14	Spacecraft magnetic attitude control using approximating sequence Riccati equations. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51, 3374-3385. Model Based Adaptive Direct Power Control for Three-Level NPC Converters. IEEE Transactions on Industrial Informatics, 2013, 9, 1148-1157. Design of a Middleware Interface for ARINC 429 Data Bus. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48, 1136-1149. Multilevel Converters: An Enabling Technology for High-Power Applications. Proceedings of the IEEE, 2009, 97, 1786-1817. Real time sensor acquisition platform for experimental UAV research., 2009, , .	7.2 2.6	19 85 4 970

#	Article	IF	CITATIONS
19	Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey. IEEE Transactions on Industrial Electronics, 2006, 53, 1002-1016.	5.2	3,182
20	Modeling Strategy for Back-to-Back Three-Level Converters Applied to High-Power Wind Turbines. IEEE Transactions on Industrial Electronics, 2006, 53, 1483-1491.	5.2	191
21	New State Vectors Selection Using Space Vector Modulation in Three Dimensional Control Regions for Multilevel Converters. , 2006, , .		4
22	DC-link capacitors voltage balancing in multilevel four-leg diode-clamped converters. , 2005, , .		20
23	Three dimensional space vector modulation for four-leg inverters using natural coordinates. , 2004, , .		10
24	A NOVEL SPACE-VECTOR ALGORITHM FOR MULTILEVEL CONVERTERS BASED ON GEOMETRICAL CONSIDERATIONS USING A NEW SEQUENCE CONTROL TECHNIQUE. Journal of Circuits, Systems and Computers, 2004, 13, 845-861.	1.0	8
25	A switching control strategy based on output regulation subspaces for the control of induction motors using a three-level inverter. IEEE Power Electronics Letters, 2003, 1, 29-32.	1.1	19
26	Three-dimensional space vector modulation in abc coordinates for four-leg voltage source converters. IEEE Power Electronics Letters, 2003, 1, 104-109.	1.1	125
27	A 3-D space vector modulation generalized algorithm for multilevel converters. IEEE Power Electronics Letters, 2003, 1, 110-114.	1.1	87
28	Effective algorithm for multilevel converters with very low computational cost. Electronics Letters, 2002, 38, 1398.	0.5	20
29	New fast space-vector modulation for multilevel converters based on geometrical considerations. , 0,		25
30	Effective space-vector modulation algorithm for multilevel converters. , 0, , .		2
31	A SVM-3D generalized algorithm for multilevel converters. , 0, , .		30
32	Control of a three level converter used as a synchronous rectifier. , 0, , .		15
33	Modeling of a three level converter used in a synchronous rectifier application. , 0, , .		18
34	Simple and advanced three dimensional spacevector modulation algorithm for four-leg multilevel converters topology. , 0, , .		4
35	Modeling of Five-Level Converter Used in a Synchronous Rectifier Application. , 0, , .		9