
Masako Kiyono

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/550611/publications.pdf Version: 2024-02-01

MASAKO KIVONO

#	Article	IF	CITATIONS
1	Characteristics of cadmium accumulation and tolerance in novel Cd-accumulating crops, Avena strigosa and Crotalaria juncea. Journal of Experimental Botany, 2006, 57, 2955-2965.	4.8	101
2	Phytochelatin Synthase has Contrasting Effects on Cadmium and Arsenic Accumulation in Rice Grains. Plant and Cell Physiology, 2017, 58, 1730-1742.	3.1	91
3	The MerE protein encoded by transposon Tn <i>21</i> is a broad mercury transporter in <i>Escherichia coli</i> . FEBS Letters, 2009, 583, 1127-1131.	2.8	67
4	Role of MerC, MerE, MerF, MerT, and/or MerP in Resistance to Mercurials and the Transport of Mercurials in <i>Escherichia coli</i> . Biological and Pharmaceutical Bulletin, 2013, 36, 1835-1841.	1.4	50
5	Polyphosphate produced in recombinantEscherichia coliconfers mercury resistance. FEMS Microbiology Letters, 2002, 207, 159-164.	1.8	49
6	Nucleotide sequence and expression of the organomercurial-resistance determinants from a Pseudomonas K-62 plasmid pMR26. Gene, 1997, 189, 151-157.	2.2	47
7	Engineering expression of bacterial polyphosphate kinase in tobacco for mercury remediation. Applied Microbiology and Biotechnology, 2006, 72, 777-782.	3.6	47
8	Mercurial-resistance determinants in Pseudomonas strain K-62 plasmid pMR68. AMB Express, 2013, 3, 41.	3.0	47
9	Bacterial heavy metal transporter MerC increases mercury accumulation in Arabidopsis thaliana. Biochemical Engineering Journal, 2013, 71, 19-24.	3.6	38
10	Accumulation of Mercury in Transgenic Tobacco Expressing Bacterial Polyphosphate. Biological and Pharmaceutical Bulletin, 2006, 29, 2350-2353.	1.4	35
11	Expression of the bacterial heavy metal transporter MerC fused with a plant SNARE, SYP121, in Arabidopsis thaliana increases cadmium accumulation and tolerance. Planta, 2012, 235, 841-850.	3.2	35
12	Atg5-dependent autophagy plays a protective role against methylmercury-induced cytotoxicity. Toxicology Letters, 2016, 262, 135-141.	0.8	34
13	Identification of C-terminal Regions in Arabidopsis thaliana Phytochelatin Synthase 1 Specifically Involved in Activation by Arsenite. Plant and Cell Physiology, 2018, 59, 500-509.	3.1	32
14	Lack of involvement ofmerTandmerPin methylmercury transport in mercury resistant Pseudomonas K-62. FEMS Microbiology Letters, 1995, 128, 301-306.	1.8	30
15	Phenylmercury Transport Mediated by merT-merP Genes of Pseudomonas K-62 Plasmid pMR26 Biological and Pharmaceutical Bulletin, 1997, 20, 107-109.	1.4	23
16	Evaluation of ppk-Specified Polyphosphate as a Mercury Remedial Tool Biological and Pharmaceutical Bulletin, 2001, 24, 1423-1426.	1.4	23
17	Increase methylmercury accumulation in Arabidopsis thaliana expressing bacterial broad-spectrum mercury transporter MerE. AMB Express, 2013, 3, 52.	3.0	23
18	Roles Played by MerE and MerT in the Transport of Inorganic and Organic Mercury Compounds in Gram-negative Bacteria. Journal of Health Science, 2010, 56, 123-127.	0.9	22

ΜΑΣΑΚΟ ΚΙΥΟΝΟ

#	Article	IF	CITATIONS
19	DNA Sequence and Expression of a Defective mer Operon from Pseudomonas K-62 Plasmid pMR26 Biological and Pharmaceutical Bulletin, 1999, 22, 910-914.	1.4	20
20	Engineering expression of the heavy metal transporter MerC in Saccharomyces cerevisiae for increased cadmium accumulation. Applied Microbiology and Biotechnology, 2010, 86, 753-759.	3.6	19
21	Role of MerT and MerP from Pseudomonas K-62 Plasmid pMR26 in the Transport of Phenylmercury Biological and Pharmaceutical Bulletin, 2000, 23, 279-282.	1.4	18
22	A Novel Role of MerC in Methylmercury Transport and Phytoremediation of Methylmercury Contamination. Biological and Pharmaceutical Bulletin, 2017, 40, 1125-1128.	1.4	17
23	SCARECROW promoter-driven expression of a bacterial mercury transporter MerC in root endodermal cells enhances mercury accumulation in Arabidopsis shoots. Planta, 2019, 250, 667-674.	3.2	17
24	Ectopic expression of a bacterial mercury transporter MerC in root epidermis for efficient mercury accumulation in shoots of Arabidopsis plants. Scientific Reports, 2019, 9, 4347.	3.3	17
25	Sequestosome1/p62 protects mouse embryonic fibroblasts against low-dose methylercury-induced cytotoxicity and is involved in clearance of ubiquitinated proteins. Scientific Reports, 2017, 7, 16735.	3.3	13
26	Cadmium transport activity of four mercury transporters (MerC, MerE, MerF and MerT) and effects of the periplasmic mercury-binding protein MerP on Mer-dependent cadmium uptake. FEMS Microbiology Letters, 2020, 367, .	1.8	12
27	Cysteine and histidine residues are involved in <i>Escherichia coli</i> Tn <i>21</i> MerE methylmercury transport. FEBS Open Bio, 2017, 7, 1994-1999.	2.3	11
28	Intracellular Demethylation of Methylmercury to Inorganic Mercury by Organomercurial Lyase (MerB) Strengthens Cytotoxicity. Toxicological Sciences, 2019, 170, 438-451.	3.1	11
29	Genetic expression of bacterial merC fused with plant SNARE in Saccharomyces cerevisiae increased mercury accumulation. Biochemical Engineering Journal, 2011, 56, 137-141.	3.6	10
30	Variation in the activity of distinct cytochalasins as autophagy inhibitiors in human lung A549 cells. Biochemical and Biophysical Research Communications, 2017, 494, 641-647.	2.1	10
31	Docosahexaenoic acid enhances methylmercury-induced endoplasmic reticulum stress and cell death and eicosapentaenoic acid potentially attenuates these effects in mouse embryonic fibroblasts. Toxicology Letters, 2019, 306, 35-42.	0.8	10
32	Phytochelatin-mediated metal detoxification pathway is crucial for an organomercurial phenylmercury tolerance in Arabidopsis. Plant Molecular Biology, 2022, 109, 563-577.	3.9	10
33	Involvement of merB in the Expression of the pMR26 mer Operon Induced by Organomercurials. Journal of Health Science, 2000, 46, 142-145.	0.9	9
34	Cytochalasin E increased the sensitivity of human lung cancer A549â€ ⁻ cells to bortezomib via inhibition of autophagy. Biochemical and Biophysical Research Communications, 2018, 498, 603-608.	2.1	8
35	Oleanolic acid 3-glucoside, a synthetic oleanane-type saponin, alleviates methylmercury toxicity in vitro and in vivo. Toxicology, 2019, 417, 15-22.	4.2	8
36	Significant contribution of autophagy in mitigating cytotoxicity of gadolinium ions. Biochemical and Biophysical Research Communications, 2020, 526, 206-212.	2.1	8

ΜΑΣΑΚΟ ΚΙΥΟΝΟ

#	Article	IF	CITATIONS
37	p62/sequestosome 1 attenuates methylmercury-induced endoplasmic reticulum stress in mouse embryonic fibroblasts. Toxicology Letters, 2021, 353, 93-99.	0.8	8
38	An autophagy deficiency promotes methylmercury-induced multinuclear cell formation. Biochemical and Biophysical Research Communications, 2019, 511, 460-467.	2.1	7
39	Selection of Agar Reagents for Medium Solidification Is a Critical Factor for Metal(loid) Sensitivity and Ionomic Profiles of Arabidopsis thaliana. Frontiers in Plant Science, 2020, 11, 503.	3.6	7
40	Development of affinity bead–based <i>in vitro</i> metal–ligand binding assay reveals dominant cadmium affinity of thiol-rich small peptides phytochelatins beyond glutathione. Metallomics, 2021, 13,	2.4	6
41	Immunotoxic Effect of Low-Dose Methylmercury Is Negligible in Mouse Models of Ovalbumin or Mite-Induced Th2 Allergy. Biological and Pharmaceutical Bulletin, 2016, 39, 1353-1358.	1.4	5
42	Stable expression of bacterial transporter ArsB attached to SNARE molecule enhances arsenic accumulation in <i>Arabidopsis</i> . Plant Signaling and Behavior, 2020, 15, 1802553.	2.4	4
43	Effects of chemical forms of gadolinium on the spleen in mice after single intravenous administration. Biochemistry and Biophysics Reports, 2022, 29, 101217.	1.3	4
44	Oleanolic Acid-3-(1′2′Orthoacetate-Glucoside)-28-Glucoside Alleviates Methylmercury Toxicity <i>in Vitro</i> and <i>in Vivo</i> . BPB Reports, 2019, 2, 56-60.	0.3	1
45	Protective function of the SQSTM1/p62-NEDD4 complex against methylmercury toxicity. Biochemical and Biophysical Research Communications, 2022, 609, 134-140.	2.1	1