Jose L Contreras-Vidal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5505888/publications.pdf

Version: 2024-02-01

181 papers

7,186 citations

76031 42 h-index 75 g-index

184 all docs

184 docs citations

times ranked

184

7003 citing authors

#	Article	IF	CITATIONS
1	Deep Learning Methods for EEG Neural Classification. , 2022, , 1-39.		2
2	Assessment of Biomechanical Predictors of Occurrence of Low-Amplitude N1 Potentials Evoked by Naturally Occurring Postural Instabilities. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 476-485.	2.7	1
3	Decoding neural activity preceding balance loss during standing with a lower-limb exoskeleton using an interpretable deep learning model. Journal of Neural Engineering, 2022, 19, 036015.	1.8	5
4	Effects of transcutaneous spinal stimulation on spatiotemporal cortical activation patterns: a proof-of-concept EEG study. Journal of Neural Engineering, 2022, 19, 046001.	1.8	4
5	A Mixed Filtering Approach for Real-Time Seizure State Tracking Using Multi-Channel Electroencephalography Data. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 2037-2045.	2.7	8
6	A Roadmap Towards Standards for Neurally Controlled End Effectors. IEEE Open Journal of Engineering in Medicine and Biology, 2021, 2, 84-90.	1.7	8
7	Meeting Proceedings for SCI 2020: Launching a Decade of Disruption in Spinal Cord Injury Research. Journal of Neurotrauma, 2021, 38, 1251-1266.	1.7	14
8	Concerns in the Blurred Divisions Between Medical and Consumer Neurotechnology. IEEE Systems Journal, 2021, 15, 3069-3080.	2.9	9
9	Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering, 2021, 18, 046039.	1.8	19
10	Standardization of Neurotechnology for Brain-Machine Interfacing: State of the Art and Recommendations. IEEE Open Journal of Engineering in Medicine and Biology, 2021, 2, 71-73.	1.7	6
11	Towards a Portable Magnetoencephalography Based Brain Computer Interface with Optically-Pumped Magnetometers., 2020, 2020, 3420-3423.		11
12	Analysis of the EEG Rhythms Based on the Empirical Mode Decomposition During Motor Imagery When Using a Lower-Limb Exoskeleton. A Case Study. Frontiers in Neurorobotics, 2020, 14, 48.	1.6	16
13	Sensory Integration in Human Movement: A New Brain-Machine Interface Based on Gamma Band and Attention Level for Controlling a Lower-Limb Exoskeleton. Frontiers in Bioengineering and Biotechnology, 2020, 8, 735.	2.0	23
14	Characterization of the Stages of Creative Writing With Mobile EEG Using Generalized Partial Directed Coherence. Frontiers in Human Neuroscience, 2020, 14, 577651.	1.0	11
15	Neural activity modulations and motor recovery following brain-exoskeleton interface mediated stroke rehabilitation. Neurolmage: Clinical, 2020, 28, 102502.	1.4	24
16	An empirical comparison of neural networks and machine learning algorithms for EEG gait decoding. Scientific Reports, 2020, 10, 4372.	1.6	51
17	Classification and Transfer Learning of EEG during a Kinesthetic Motor Imagery Task using Deep Convolutional Neural Networks. , 2019, 2019, 3046-3049.		6
18	Regression-based reconstruction of human grip force trajectories with noninvasive scalp electroencephalography. Journal of Neural Engineering, 2019, 16, 066030.	1.8	9

#	Article	IF	Citations
19	Towards a Unified Framework for De-noising Neural Signals. , 2019, 2019, 620-623.		2
20	Your Brain on Art: A New Paradigm to Study Artistic Creativity Based on the â€~Exquisite Corpse' Using Mobile Brain-Body Imaging. , 2019, , 283-308.		5
21	Fronto-Parietal Brain Areas Contribute to the Online Control of Posture during a Continuous Balance Task. Neuroscience, 2019, 413, 135-153.	1.1	30
22	Assaying neural activity of children during video game play in public spaces: a deep learning approach. Journal of Neural Engineering, 2019, 16, 036028.	1.8	18
23	Deep learning for electroencephalogram (EEG) classification tasks: a review. Journal of Neural Engineering, 2019, 16, 031001.	1.8	833
24	A Translational Roadmap for a Brain-Machine-Interface (BMI) System for Rehabilitation. , 2019, , .		3
25	Emotion Recognition by Point Process Characterization of Heartbeat Dynamics., 2019,,.		6
26	Real-Time Seizure State Tracking Using Two Channels: A Mixed-Filter Approach. , 2019, , .		12
27	EEG-based Neural Decoding of Gait in Developing Children. , 2019, , .		1
28	Design of a customizable, modular pediatric exoskeleton for rehabilitation and mobility., 2019,,.		17
29	At the Crossroads of Art and Science: Neuroaesthetics Begins to Come into Its Own. Leonardo, 2019, 52, 103-106.	0.2	O
30	Into the Mind of an Artist: Convergent Research at the Nexus of Art, Science, and Technology. Springer Series on Bio- and Neurosystems, 2019, , 61-74.	0.2	2
31	Towards a Roadmap for Neuroaesthetics. Springer Series on Bio- and Neurosystems, 2019, , 215-220.	0.2	O
32	Introduction: The Confluence of Art, Neuroscience, and Creativity Through Mobile Brain–Body Imaging. Springer Series on Bio- and Neurosystems, 2019, , 1-3.	0.2	0
33	Neural Decoding of Robot-Assisted Gait During Rehabilitation After Stroke. American Journal of Physical Medicine and Rehabilitation, 2018, 97, 541-550.	0.7	35
34	Brain–machine interfaces for controlling lower-limb powered robotic systems. Journal of Neural Engineering, 2018, 15, 021004.	1.8	157
35	Cortical control of upright stance in elderly. Mechanisms of Ageing and Development, 2018, 169, 19-31.	2.2	60
36	A mobile brain-body imaging dataset recorded during treadmill walking with a brain-computer interface. Scientific Data, 2018, 5, 180074.	2.4	25

#	Article	IF	Citations
37	Full body mobile brain-body imaging data during unconstrained locomotion on stairs, ramps, and level ground. Scientific Data, 2018, 5, 180133.	2.4	27
38	Effects of speed and direction of perturbation on electroencephalographic and balance responses. Experimental Brain Research, 2018, 236, 2073-2083.	0.7	19
39	Towards a whole body brain-machine interface system for decoding expressive movement intent Challenges and Opportunities. , 2017, , .		10
40	Improving robotic stroke rehabilitation by incorporating neural intent detection: Preliminary results from a clinical trial., 2017, 2017, 122-127.		17
41	Real-time EEG-based brain-computer interface to a virtual avatar enhances cortical involvement in human treadmill walking. Scientific Reports, 2017, 7, 8895.	1.6	68
42	Prediction of lower-limb joint kinematics from surface EMG during overground locomotion., 2017,,.		12
43	Electrocortical amplitude modulations of human level-ground, slope, and stair walking. , 2017, 2017, 1913-1916.		5
44	Cortical features of locomotion-mode transitions via non-invasive EEG., 2017, , .		3
45	EEG-based brain-computer interface to a virtual walking avatar engages cortical adaptation. , 2017, , .		6
46	Prediction of EMG envelopes of multiple terrains over-ground walking from EEG signals using an unscented Kalman filter. , $2017, \ldots$		7
47	Preliminary results from a stroke rehabilitation protocol utilizing a robotic BMI-exoskeleton system. , 2017, , .		O
48	Risk and adverse events related to lower-limb exoskeletons. , 2017, , .		3
49	Development of a pediatric lower-extremity gait system. , 2017, , .		O
50	Neural decoding of robot-assisted gait during rehabilitation after stroke. , 2017, , .		1
51	Towards the development of a hybrid neural-machine interface for volitional control of a powered lower limb prosthesis., 2017,,.		2
52	Multi-Trial Gait Adaptation of Healthy Individuals during Visual Kinematic Perturbations. Frontiers in Human Neuroscience, $2017,11,320.$	1.0	10
53	Deployment of Mobile EEG Technology in an Art Museum Setting: Evaluation of Signal Quality and Usability. Frontiers in Human Neuroscience, 2017, 11, 527.	1.0	55
54	Modulation of Neural Activity during Guided Viewing of Visual Art. Frontiers in Human Neuroscience, 2017, 11, 581.	1.0	19

#	Article	IF	Citations
55	Multiple Kernel Based Region Importance Learning for Neural Classification of Gait States from EEG Signals. Frontiers in Neuroscience, 2017, 11, 170.	1.4	48
56	Electrocortical correlates of human level-ground, slope, and stair walking. PLoS ONE, 2017, 12, e0188500.	1.1	35
57	Risk management and regulations for lower limb medical exoskeletons: a review. Medical Devices: Evidence and Research, 2017, Volume 10, 89-107.	0.4	98
58	Control architecture and network communication for a pediatric exoskeleton., 2017,,.		2
59	Design and Optimization of an EEG-Based Brain Machine Interface (BMI) to an Upper-Limb Exoskeleton for Stroke Survivors. Frontiers in Neuroscience, 2016, 10, 122.	1.4	130
60	Powered exoskeletons for bipedal locomotion after spinal cord injury. Journal of Neural Engineering, 2016, 13, 031001.	1.8	148
61	Noninvasive EEG correlates of overground and stair walking. , 2016, 2016, 5729-5732.		18
62	Unscented Kalman filter for neural decoding of human treadmill walking from non-invasive electroencephalography., 2016, 2016, 1548-1551.		12
63	Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain–computer interface to a virtual reality avatar. Journal of Neural Engineering, 2016, 13, 036006.	1.8	82
64	Cortical activity modulations underlying age-related performance differences during posture–cognition dual tasking. Experimental Brain Research, 2016, 234, 3321-3334.	0.7	37
65	Robotic Assistance of Human Motion Using Active-Backdrivability on a Geared Electromagnetic Motor. International Journal of Advanced Robotic Systems, 2016, 13, 40.	1.3	12
66	Multisession, noninvasive closed-loop neuroprosthetic control of grasping by upper limb amputees. Progress in Brain Research, 2016, 228, 107-128.	0.9	28
67	A robust adaptive denoising framework for real-time artifact removal in scalp EEG measurements. Journal of Neural Engineering, 2016, 13, 026013.	1.8	120
68	The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 54.	2.4	271
69	An exploration of grip force regulation with a low-impedance myoelectric prosthesis featuring referred haptic feedback. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 104.	2.4	35
70	A Novel Experimental and Analytical Approach to the Multimodal Neural Decoding of Intent During Social Interaction in Freely-behaving Human Infants. Journal of Visualized Experiments, 2015, , .	0.2	1
71	Human-Centered Design of Wearable Neuroprostheses and Exoskeletons. Al Magazine, 2015, 36, 12-22.	1.4	22
72	Your Brain on Art: Emergent Cortical Dynamics During Aesthetic Experiences. Frontiers in Human Neuroscience, 2015, 9, 626.	1.0	38

#	Article	IF	Citations
73	Global cortical activity predicts shape of hand during grasping. Frontiers in Neuroscience, 2015, 9, 121.	1.4	78
74	Classification of finger vibrotactile input using scalp EEG., 2015, 2015, 4717-20.		2
7 5	Predicting hand forces from scalp electroencephalography during isometric force production and object grasping., 2015, 2015, 7570-3.		6
76	A closed-loop brain computer interface to a virtual reality avatar: Gait adaptation to visual kinematic perturbations., 2015, 2015, 30-37.		27
77	Evolution of cerebral cortico-cortical communication during visuomotor adaptation to a cognitive-motor executive challenge. Biological Psychology, 2015, 105, 51-65.	1.1	39
78	Real-Time Strap Pressure Sensor System for Powered Exoskeletons. Sensors, 2015, 15, 4550-4563.	2.1	60
79	Graphonomics and its contribution to the field of motor behavior: A position statement. Human Movement Science, 2015, 43, 165-168.	0.6	5
80	Negligible Motion Artifacts in Scalp Electroencephalography (EEG) During Treadmill Walking. Frontiers in Human Neuroscience, 2015, 9, 708.	1.0	102
81	Decoding repetitive finger movements with brain activity acquired via non-invasive electroencephalography. Frontiers in Neuroengineering, 2014, 7, 3.	4.8	52
82	Neural decoding of expressive human movement from scalp electroencephalography (EEG). Frontiers in Human Neuroscience, 2014, 8, 188.	1.0	58
83	Sitting and standing intention can be decoded from scalp EEG recorded prior to movement execution. Frontiers in Neuroscience, 2014, 8, 376.	1.4	99
84	Observation-based training for neuroprosthetic control of grasping by amputees., 2014, 2014, 3989-92.		4
85	Identifying engineering, clinical and patient's metrics for evaluating and quantifying performance of brain-machine interface (BMI) systems., 2014, 2014, 1489-1492.		4
86	Detecting movement intent from scalp EEG in a novel upper limb robotic rehabilitation system for stroke., 2014, 2014, 4127-4130.		17
87	An integrated neuro-robotic interface for stroke rehabilitation using the NASA X1 powered lower limb exoskeleton., 2014, 2014, 3985-8.		30
88	Decoding of intentional actions from scalp electroencephalography (EEG) in freely-behaving infants. , 2014, 2015-8.		3
89	Auditory–motor integration of subliminal phase shifts in tapping: better than auditory discrimination would predict. Experimental Brain Research, 2014, 232, 1207-1218.	0.7	6
90	Applications of Brain–Machine Interface Systems in Stroke Recovery and Rehabilitation. Current Physical Medicine and Rehabilitation Reports, 2014, 2, 93-105.	0.3	67

#	Article	IF	Citations
91	The influence of social evaluation on cerebral cortical activity and motor performance: A study of "Real-Life―competition. International Journal of Psychophysiology, 2013, 90, 240-249.	0.5	33
92	Observation-based calibration of brain-machine interfaces for grasping. , 2013, , .		3
93	Reply to Letter to the Editor "H215O PET responses to deep brain stimulation― Brain Stimulation, 2013, 6, 94-95.	0.7	1
94	15th International Graphonomics Society Conference (IGS 2011). Human Movement Science, 2013, 32, 997-998.	0.6	2
95	Classification of stand-to-sit and sit-to-stand movement from low frequency EEG with locality preserving dimensionality reduction., 2013, 2013, 6341-4.		4
96	Reconstructing surface EMG from scalp EEG during myoelectric control of a closed looped prosthetic device., 2013, 2013, 5602-5.		8
97	Vibrotactile feedback of pose error enhances myoelectric control of a prosthetic hand., 2013,,.		20
98	Decoding the evolving grasping gesture from electroencephalographic (EEG) activity., 2013, 2013, 5590-3.		13
99	NeuroRex: A clinical neural interface roadmap for EEG-based brain machine interfaces to a lower body robotic exoskeleton., 2013, 2013, 1579-82.		68
100	A pre-clinical framework for neural control of a therapeutic upper-limb exoskeleton., 2013,, 1159-1162.		8
101	High accuracy decoding of user intentions using EEG to control a lower-body exoskeleton. , 2013, 2013, 5606-9.		151
102	Understanding the role of haptic feedback in a teleoperated/prosthetic grasp and lift task. , 2013, , .		30
103	Novel compliant actuator for wearable robotics applications. , 2013, 2013, 2854-7.		7
104	Simultaneous Scalp Electroencephalography (EEG), Electromyography (EMG), and Whole-body Segmental Inertial Recording for Multi-modal Neural Decoding. Journal of Visualized Experiments, 2013, , .	0.2	19
105	DETERMINATION OF TRAJECTORIES USING NON-INVASIVE BCI TECHNIQUES IN 3D ENVIRONMENTS., 2013,,.		O
106	Functional near-infrared spectroscopy-based correlates of prefrontal cortical dynamics during a cognitive-motor executive adaptation task. Frontiers in Human Neuroscience, 2013, 7, 277.	1.0	45
107	Development of state estimation explains improvements in sensorimotor performance across childhood. Journal of Neurophysiology, 2012, 107, 3040-3049.	0.9	25
108	Cortex inspired model for inverse kinematics computation for a humanoid robotic finger., 2012, 2012, 3052-5.		3

#	Article	IF	CITATIONS
109	Modeling of visuospatial perspectives processing and modulation of the fronto-parietal network activity during action imitation., 2012, 2012, 2551-4.		6
110	Restoration of Whole Body Movement: Toward a Noninvasive Brain-Machine Interface System. IEEE Pulse, 2012, 3, 34-37.	0.1	24
111	Common and unique responses to dopamine agonist therapy and deep brain stimulation in Parkinson's disease: An H215O PET study. Brain Stimulation, 2012, 5, 605-615.	0.7	24
112	Decoding Intra-Limb and Inter-Limb Kinematics During Treadmill Walking From Scalp Electroencephalographic (EEG) Signals. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20, 212-219.	2.7	96
113	Independent component analysis of resting brain activity reveals transient modulation of local cortical processing by transcranial direct current stimulation., 2011, 2011, 8102-5.		11
114	Learning of spatial relationships between observed and imitated actions allows invariant inverse computation in the frontal mirror neuron system., 2011, 2011, 4183-6.		3
115	Task-Specific Modulation of Human Auditory Evoked Response in a Delayed-Match-To-Sample Task. Frontiers in Psychology, 2011, 2, 85.	1.1	4
116	Neural decoding of treadmill walking from noninvasive electroencephalographic signals. Journal of Neurophysiology, 2011, 106, 1875-1887.	0.9	190
117	Cerebral cortical dynamics and the quality of motor behavior during social evaluative challenge. Psychophysiology, 2011, 48, 479-487.	1.2	17
118	Cerebral cortical dynamics during visuomotor transformation: Adaptation to a cognitiveâ€motor executive challenge. Psychophysiology, 2011, 48, 813-824.	1.2	48
119	Parkinson's disease differentially affects adaptation to gradual as compared to sudden visuomotor distortions. Human Movement Science, 2011, 30, 760-769.	0.6	32
120	Multisensory adaptation of spatial-to-motor transformations in children with developmental coordination disorder. Experimental Brain Research, 2011, 212, 257-265.	0.7	16
121	Cortical network modeling for inverse kinematic computation of an anthropomorphic finger. , 2011, 2011, 8251-4.		4
122	Reconstructing hand kinematics during reach to grasp movements from electroencephalographic signals., 2011, 2011, 5444-7.		34
123	Towards a non-invasive brain-machine interface system to restore gait function in humans. , 2011, 2011, 4588-91.		15
124	Reply to comment on †Fast attainment of computer cursor control with noninvasively acquired brain signals'. Journal of Neural Engineering, 2011, 8, 058002.	1.8	4
125	Fast attainment of computer cursor control with noninvasively acquired brain signals. Journal of Neural Engineering, 2011, 8, 036010.	1.8	69
126	Design principles for noninvasive brain-machine interfaces. , 2011, 2011, 4223-6.		0

#	Article	IF	CITATIONS
127	Neural Network Models for Reaching and Dexterous Manipulation in Humans and Anthropomorphic Robotic Systems., 2011,, 187-217.		6
128	Reconstructing Three-Dimensional Hand Movements from Noninvasive Electroencephalographic Signals. Journal of Neuroscience, 2010, 30, 3432-3437.	1.7	313
129	Hemodynamic correlates of visuomotor motor adaptation by functional Near Infrared Spectroscopy. , 2010, 2010, 2918-21.		7
130	Neural Substrates of Graphomotor Sequence Learning: A Combined fMRI and Kinematic Study. Journal of Neurophysiology, 2010, 103, 3366-3377.	0.9	26
131	Toward improved sensorimotor integration and learning using upper-limb prosthetic devices. , 2010, 2010, 5077-80.		20
132	Movement decoding from noninvasive neural signals., 2010, 2010, 2825-8.		2
133	Evidence for Multisensory Spatial-to-Motor Transformations in Aiming Movements of Children. Journal of Neurophysiology, 2009, 101, 315-322.	0.9	25
134	Brain biomarkers of motor adaptation using phase synchronization., 2009, 2009, 5930-3.		14
135	Functionally biarticular control for smart prosthetics. , 2009, , .		6
136	A model for altered neural network dynamics related to prehension movements in Parkinson disease. Biological Cybernetics, 2009, 100, 271-287.	0.6	6
137	Adaptation of sound localization induced by rotated visual feedback in reaching movements. Experimental Brain Research, 2009, 193, 315-321.	0.7	25
138	Decoding three-dimensional hand kinematics from electroencephalographic signals., 2009, 2009, 5010-3.		23
139	Compact and low-cost tendon vibrator for inducing proprioceptive illusions. , 2009, , .		8
140	Decoding center-out hand velocity from MEG signals during visuomotor adaptation. NeuroImage, 2009, 47, 1691-1700.	2.1	64
141	Brain Processes and Neurofeedback for Performance Enhancement of Precision Motor Behavior. Lecture Notes in Computer Science, 2009, , 810-817.	1.0	6
142	Simulated neural dynamics of decision-making in an auditory delayed match-to-sample task. Biological Cybernetics, 2008, 99, 15-27.	0.6	5
143	Exercise, APOE, and working memory: MEG and behavioral evidence for benefit of exercise in epsilon4 carriers. Biological Psychology, 2008, 78, 179-187.	1.1	91
144	Temporal variability in continuous versus discontinuous drawing for children with Developmental Coordination Disorder. Neuroscience Letters, 2008, 431, 215-220.	1.0	33

#	Article	IF	CITATIONS
145	Continuous and Discontinuous Drawing: High Temporal Variability Exists Only in Discontinuous Circling in Young Children. Journal of Motor Behavior, 2008, 40, 391-399.	0.5	12
146	Decoding hand and cursor kinematics from magnetoencephalographic signals during tool use., 2008, 2008, 5306-9.		12
147	Fitness and Cognitive Decline of the Aging Brain - A Preliminary Investigation. Medicine and Science in Sports and Exercise, 2008, 40, S90.	0.2	O
148	Comparison of Neurosensorimotor Adaptation Under Kinematic and Dynamic Distortions., 2007,,.		0
149	The role of the striatum in adaptation learning: a computational model. Biological Cybernetics, 2007, 96, 377-388.	0.6	19
150	Magnetoencephalographic artifact identification and automatic removal based on independent component analysis and categorization approaches. Journal of Neuroscience Methods, 2006, 157, 337-354.	1.3	38
151	Abrupt, but not gradual visuomotor distortion facilitates adaptation in children with developmental coordination disorder. Human Movement Science, 2006, 25, 622-633.	0.6	57
152	Effects of increased complexity of visuo-motor transformations on children's arm movements. Human Movement Science, 2006, 25, 553-567.	0.6	47
153	Development of forward models for hand localization and movement control in 6- to 10-year-old children. Human Movement Science, 2006, 25, 634-645.	0.6	49
154	Development of visuomotor representations for hand movement in young children. Experimental Brain Research, 2005, 162, 155-164.	0.7	73
155	Dynamic estimation of hand position is abnormal in Parkinson's disease. Parkinsonism and Related Disorders, 2004, 10, 501-506.	1.1	34
156	Independent component analysis of dynamic brain responses during visuomotor adaptation. NeuroImage, 2004, 21, 936-945.	2.1	64
157	Visuomotor Adaptation in Children with Developmental Coordination Disorder. Motor Control, 2004, 8, 450-460.	0.3	67
158	Learning Multiple Visuomotor Transformations: Adaptation and Context-Dependent Recall. Motor Control, 2004, 8, 534-546.	0.3	10
159	Effects of Parkinson's disease on visuomotor adaptation. Experimental Brain Research, 2003, 150, 25-32.	0.7	95
160	Adaptation to display rotation and display gain distortions during drawing. Human Movement Science, 2003, 22, 173-187.	0.6	7
161	Visuomotor Adaptation in Normal Aging. Learning and Memory, 2003, 10, 55-63.	0.5	181
162	Adaptation of handwriting size under distorted visual feedback in patients with Parkinson's disease and elderly and young controls. Journal of Neurology, Neurosurgery and Psychiatry, 2002, 72, 315-324.	0.9	86

#	Article	IF	CITATIONS
163	Adaptation to changes in vertical display gain during handwriting in Parkinson's disease patients, elderly and young controls. Parkinsonism and Related Disorders, 2002, 9, 77-84.	1.1	31
164	Visuo-motor adaptation in smokeless tobacco users. Nicotine and Tobacco Research, 1999, 1, 219-227.	1.4	3
165	A predictive reinforcement model of dopamine neurons for learning approach behavior. , 1999, 6, 191-214.		78
166	Parkinsons disease and the control of size and speed in handwriting. Neuropsychologia, 1999, 37, 685-694.	0.7	95
167	Chapter 15 The gating functions of the basal ganglia in movement control. Progress in Brain Research, 1999, 121, 261-276.	0.9	10
168	Elderly subjects are impaired in spatial coordination in fine motor control. Acta Psychologica, 1998, 100, 25-35.	0.7	101
169	Neural dynamics of short and medium-term motor control effects of levodopa therapy in Parkinson's disease. Artificial Intelligence in Medicine, 1998, 13, 57-79.	3.8	27
170	Parkinsonism Reduces Coordination of Fingers, Wrist, and Arm in Fine Motor Control. Experimental Neurology, 1997, 146, 159-170.	2.0	354
171	Adaptation to gradual as compared with sudden visuo-motor distortions. Experimental Brain Research, 1997, 115, 557-561.	0.7	265
172	A NEURAL NETWORK MODEL OF MOVEMENT PRODUCTION IN PARKINSON'S DISEASE AND HUNTINGTON'S DISEASE. Progress in Neural Processing, 1996, , 377-392.	0.3	4
173	Micrographia in Parkinson's disease. NeuroReport, 1995, 6, 2089-2092.	0.6	37
174	Effects of parkinsonism on motor control. Life Sciences, 1995, 58, 165-176.	2.0	35
175	A neural model of basal ganglia?thalamocortical relations in normal and parkinsonian movement. Biological Cybernetics, 1995, 73, 467-476.	0.6	7
176	The creative brain: Symmetry breaking in motor imagery. Behavioral and Brain Sciences, 1994, 17, 204-205.	0.4	1
177	Equilibria and Dynamics of a Neural Network Model for Opponent Muscle Control., 1993,, 439-457.		10
178	A Fast BCS/FCS Algorithm for Image Segmentation. , 1993, , 251-254.		0
179	Multimodal real-world mapping and navigation system for autonomous mobile robots based on neural maps., 1992,,.		O
180	Image segmentation through Gabor-based neural networks. , 1992, , .		1

ARTICLE IF CITATIONS

181 Neural dynamics of hand pre-shaping during prehension., 0,,... 4