
Jose L Contreras-Vidal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5505888/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deep learning for electroencephalogram (EEG) classification tasks: a review. Journal of Neural Engineering, 2019, 16, 031001.	3.5	833
2	Parkinsonism Reduces Coordination of Fingers, Wrist, and Arm in Fine Motor Control. Experimental Neurology, 1997, 146, 159-170.	4.1	354
3	Reconstructing Three-Dimensional Hand Movements from Noninvasive Electroencephalographic Signals. Journal of Neuroscience, 2010, 30, 3432-3437.	3.6	313
4	The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 54.	4.6	271
5	Adaptation to gradual as compared with sudden visuo-motor distortions. Experimental Brain Research, 1997, 115, 557-561.	1.5	265
6	Neural decoding of treadmill walking from noninvasive electroencephalographic signals. Journal of Neurophysiology, 2011, 106, 1875-1887.	1.8	190
7	Visuomotor Adaptation in Normal Aging. Learning and Memory, 2003, 10, 55-63.	1.3	181
8	Brain–machine interfaces for controlling lower-limb powered robotic systems. Journal of Neural Engineering, 2018, 15, 021004.	3.5	157
9	High accuracy decoding of user intentions using EEG to control a lower-body exoskeleton. , 2013, 2013, 5606-9.		151
10	Powered exoskeletons for bipedal locomotion after spinal cord injury. Journal of Neural Engineering, 2016, 13, 031001.	3.5	148
11	Design and Optimization of an EEC-Based Brain Machine Interface (BMI) to an Upper-Limb Exoskeleton for Stroke Survivors. Frontiers in Neuroscience, 2016, 10, 122.	2.8	130
12	A robust adaptive denoising framework for real-time artifact removal in scalp EEG measurements. Journal of Neural Engineering, 2016, 13, 026013.	3.5	120
13	Negligible Motion Artifacts in Scalp Electroencephalography (EEG) During Treadmill Walking. Frontiers in Human Neuroscience, 2015, 9, 708.	2.0	102
14	Elderly subjects are impaired in spatial coordination in fine motor control. Acta Psychologica, 1998, 100, 25-35.	1.5	101
15	Sitting and standing intention can be decoded from scalp EEG recorded prior to movement execution. Frontiers in Neuroscience, 2014, 8, 376.	2.8	99
16	Risk management and regulations for lower limb medical exoskeletons: a review. Medical Devices: Evidence and Research, 2017, Volume 10, 89-107.	0.8	98
17	Decoding Intra-Limb and Inter-Limb Kinematics During Treadmill Walking From Scalp Electroencephalographic (EEG) Signals. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20, 212-219.	4.9	96
18	Parkinsons disease and the control of size and speed in handwriting. Neuropsychologia, 1999, 37, 685-694	1.6	95

#	Article	IF	CITATIONS
19	Effects of Parkinson's disease on visuomotor adaptation. Experimental Brain Research, 2003, 150, 25-32.	1.5	95
20	Exercise, APOE, and working memory: MEG and behavioral evidence for benefit of exercise in epsilon4 carriers. Biological Psychology, 2008, 78, 179-187.	2.2	91
21	Adaptation of handwriting size under distorted visual feedback in patients with Parkinson's disease and elderly and young controls. Journal of Neurology, Neurosurgery and Psychiatry, 2002, 72, 315-324.	1.9	86
22	Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain–computer interface to a virtual reality avatar. Journal of Neural Engineering, 2016, 13, 036006.	3.5	82
23	A predictive reinforcement model of dopamine neurons for learning approach behavior. Journal of Computational Neuroscience, 1999, 6, 191-214.	1.0	78
24	Global cortical activity predicts shape of hand during grasping. Frontiers in Neuroscience, 2015, 9, 121.	2.8	78
25	Development of visuomotor representations for hand movement in young children. Experimental Brain Research, 2005, 162, 155-164.	1.5	73
26	Fast attainment of computer cursor control with noninvasively acquired brain signals. Journal of Neural Engineering, 2011, 8, 036010.	3.5	69
27	NeuroRex: A clinical neural interface roadmap for EEG-based brain machine interfaces to a lower body robotic exoskeleton. , 2013, 2013, 1579-82.		68
28	Real-time EEG-based brain-computer interface to a virtual avatar enhances cortical involvement in human treadmill walking. Scientific Reports, 2017, 7, 8895.	3.3	68
29	Visuomotor Adaptation in Children with Developmental Coordination Disorder. Motor Control, 2004, 8, 450-460.	0.6	67
30	Applications of Brain–Machine Interface Systems in Stroke Recovery and Rehabilitation. Current Physical Medicine and Rehabilitation Reports, 2014, 2, 93-105.	0.8	67
31	Independent component analysis of dynamic brain responses during visuomotor adaptation. NeuroImage, 2004, 21, 936-945.	4.2	64
32	Decoding center-out hand velocity from MEG signals during visuomotor adaptation. NeuroImage, 2009, 47, 1691-1700.	4.2	64
33	Real-Time Strap Pressure Sensor System for Powered Exoskeletons. Sensors, 2015, 15, 4550-4563.	3.8	60
34	Cortical control of upright stance in elderly. Mechanisms of Ageing and Development, 2018, 169, 19-31.	4.6	60
35	Neural decoding of expressive human movement from scalp electroencephalography (EEG). Frontiers in Human Neuroscience, 2014, 8, 188.	2.0	58
36	Abrupt, but not gradual visuomotor distortion facilitates adaptation in children with developmental coordination disorder. Human Movement Science, 2006, 25, 622-633.	1.4	57

#	Article	IF	CITATIONS
37	Deployment of Mobile EEG Technology in an Art Museum Setting: Evaluation of Signal Quality and Usability. Frontiers in Human Neuroscience, 2017, 11, 527.	2.0	55
38	Decoding repetitive finger movements with brain activity acquired via non-invasive electroencephalography. Frontiers in Neuroengineering, 2014, 7, 3.	4.8	52
39	An empirical comparison of neural networks and machine learning algorithms for EEG gait decoding. Scientific Reports, 2020, 10, 4372.	3.3	51
40	Development of forward models for hand localization and movement control in 6- to 10-year-old children. Human Movement Science, 2006, 25, 634-645.	1.4	49
41	Cerebral cortical dynamics during visuomotor transformation: Adaptation to a cognitiveâ€motor executive challenge. Psychophysiology, 2011, 48, 813-824.	2.4	48
42	Multiple Kernel Based Region Importance Learning for Neural Classification of Gait States from EEG Signals. Frontiers in Neuroscience, 2017, 11, 170.	2.8	48
43	Effects of increased complexity of visuo-motor transformations on children's arm movements. Human Movement Science, 2006, 25, 553-567.	1.4	47
44	Functional near-infrared spectroscopy-based correlates of prefrontal cortical dynamics during a cognitive-motor executive adaptation task. Frontiers in Human Neuroscience, 2013, 7, 277.	2.0	45
45	Evolution of cerebral cortico-cortical communication during visuomotor adaptation to a cognitive-motor executive challenge. Biological Psychology, 2015, 105, 51-65.	2.2	39
46	Magnetoencephalographic artifact identification and automatic removal based on independent component analysis and categorization approaches. Journal of Neuroscience Methods, 2006, 157, 337-354.	2.5	38
47	Your Brain on Art: Emergent Cortical Dynamics During Aesthetic Experiences. Frontiers in Human Neuroscience, 2015, 9, 626.	2.0	38
48	Micrographia in Parkinson's disease. NeuroReport, 1995, 6, 2089-2092.	1.2	37
49	Cortical activity modulations underlying age-related performance differences during posture–cognition dual tasking. Experimental Brain Research, 2016, 234, 3321-3334.	1.5	37
50	Effects of parkinsonism on motor control. Life Sciences, 1995, 58, 165-176.	4.3	35
51	An exploration of grip force regulation with a low-impedance myoelectric prosthesis featuring referred haptic feedback. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 104.	4.6	35
52	Electrocortical correlates of human level-ground, slope, and stair walking. PLoS ONE, 2017, 12, e0188500.	2.5	35
53	Neural Decoding of Robot-Assisted Gait During Rehabilitation After Stroke. American Journal of Physical Medicine and Rehabilitation, 2018, 97, 541-550.	1.4	35
54	Dynamic estimation of hand position is abnormal in Parkinson's disease. Parkinsonism and Related Disorders, 2004, 10, 501-506.	2.2	34

#	Article	IF	CITATIONS
55	Reconstructing hand kinematics during reach to grasp movements from electroencephalographic signals. , 2011, 2011, 5444-7.		34
56	Temporal variability in continuous versus discontinuous drawing for children with Developmental Coordination Disorder. Neuroscience Letters, 2008, 431, 215-220.	2.1	33
57	The influence of social evaluation on cerebral cortical activity and motor performance: A study of "Real-Life―competition. International Journal of Psychophysiology, 2013, 90, 240-249.	1.0	33
58	Parkinson's disease differentially affects adaptation to gradual as compared to sudden visuomotor distortions. Human Movement Science, 2011, 30, 760-769.	1.4	32
59	Adaptation to changes in vertical display gain during handwriting in Parkinson's disease patients, elderly and young controls. Parkinsonism and Related Disorders, 2002, 9, 77-84.	2.2	31
60	Understanding the role of haptic feedback in a teleoperated/prosthetic grasp and lift task. , 2013, , .		30
61	An integrated neuro-robotic interface for stroke rehabilitation using the NASA X1 powered lower limb exoskeleton. , 2014, 2014, 3985-8.		30
62	Fronto-Parietal Brain Areas Contribute to the Online Control of Posture during a Continuous Balance Task. Neuroscience, 2019, 413, 135-153.	2.3	30
63	Multisession, noninvasive closed-loop neuroprosthetic control of grasping by upper limb amputees. Progress in Brain Research, 2016, 228, 107-128.	1.4	28
64	Neural dynamics of short and medium-term motor control effects of levodopa therapy in Parkinson's disease. Artificial Intelligence in Medicine, 1998, 13, 57-79.	6.5	27
65	A closed-loop brain computer interface to a virtual reality avatar: Gait adaptation to visual kinematic perturbations. , 2015, 2015, 30-37.		27
66	Full body mobile brain-body imaging data during unconstrained locomotion on stairs, ramps, and level ground. Scientific Data, 2018, 5, 180133.	5.3	27
67	Neural Substrates of Graphomotor Sequence Learning: A Combined fMRI and Kinematic Study. Journal of Neurophysiology, 2010, 103, 3366-3377.	1.8	26
68	Evidence for Multisensory Spatial-to-Motor Transformations in Aiming Movements of Children. Journal of Neurophysiology, 2009, 101, 315-322.	1.8	25
69	Adaptation of sound localization induced by rotated visual feedback in reaching movements. Experimental Brain Research, 2009, 193, 315-321.	1.5	25
70	Development of state estimation explains improvements in sensorimotor performance across childhood. Journal of Neurophysiology, 2012, 107, 3040-3049.	1.8	25
71	A mobile brain-body imaging dataset recorded during treadmill walking with a brain-computer interface. Scientific Data, 2018, 5, 180074.	5.3	25
72	Restoration of Whole Body Movement: Toward a Noninvasive Brain-Machine Interface System. IEEE Pulse, 2012, 3, 34-37.	0.3	24

#	Article	IF	CITATIONS
73	Common and unique responses to dopamine agonist therapy and deep brain stimulation in Parkinson's disease: An H215O PET study. Brain Stimulation, 2012, 5, 605-615.	1.6	24
74	Neural activity modulations and motor recovery following brain-exoskeleton interface mediated stroke rehabilitation. Neurolmage: Clinical, 2020, 28, 102502.	2.7	24
75	Decoding three-dimensional hand kinematics from electroencephalographic signals. , 2009, 2009, 5010-3.		23
76	Sensory Integration in Human Movement: A New Brain-Machine Interface Based on Gamma Band and Attention Level for Controlling a Lower-Limb Exoskeleton. Frontiers in Bioengineering and Biotechnology, 2020, 8, 735.	4.1	23
77	Human-Centered Design of Wearable Neuroprostheses and Exoskeletons. Al Magazine, 2015, 36, 12-22.	1.6	22
78	Toward improved sensorimotor integration and learning using upper-limb prosthetic devices. , 2010, 2010, 5077-80.		20
79	Vibrotactile feedback of pose error enhances myoelectric control of a prosthetic hand. , 2013, , .		20
80	The role of the striatum in adaptation learning: a computational model. Biological Cybernetics, 2007, 96, 377-388.	1.3	19
81	Simultaneous Scalp Electroencephalography (EEG), Electromyography (EMG), and Whole-body Segmental Inertial Recording for Multi-modal Neural Decoding. Journal of Visualized Experiments, 2013, , .	0.3	19
82	Modulation of Neural Activity during Guided Viewing of Visual Art. Frontiers in Human Neuroscience, 2017, 11, 581.	2.0	19
83	Effects of speed and direction of perturbation on electroencephalographic and balance responses. Experimental Brain Research, 2018, 236, 2073-2083.	1.5	19
84	Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. Journal of Neural Engineering, 2021, 18, 046039.	3.5	19
85	Noninvasive EEG correlates of overground and stair walking. , 2016, 2016, 5729-5732.		18
86	Assaying neural activity of children during video game play in public spaces: a deep learning approach. Journal of Neural Engineering, 2019, 16, 036028.	3.5	18
87	Cerebral cortical dynamics and the quality of motor behavior during social evaluative challenge. Psychophysiology, 2011, 48, 479-487.	2.4	17
88	Detecting movement intent from scalp EEG in a novel upper limb robotic rehabilitation system for stroke. , 2014, 2014, 4127-4130.		17
89	Improving robotic stroke rehabilitation by incorporating neural intent detection: Preliminary results from a clinical trial. , 2017, 2017, 122-127.		17
90	Design of a customizable, modular pediatric exoskeleton for rehabilitation and mobility. , 2019, , .		17

6

#	Article	IF	CITATIONS
91	Multisensory adaptation of spatial-to-motor transformations in children with developmental coordination disorder. Experimental Brain Research, 2011, 212, 257-265.	1.5	16
92	Analysis of the EEG Rhythms Based on the Empirical Mode Decomposition During Motor Imagery When Using a Lower-Limb Exoskeleton. A Case Study. Frontiers in Neurorobotics, 2020, 14, 48.	2.8	16
93	Towards a non-invasive brain-machine interface system to restore gait function in humans. , 2011, 2011, 4588-91.		15
94	Brain biomarkers of motor adaptation using phase synchronization. , 2009, 2009, 5930-3.		14
95	Meeting Proceedings for SCI 2020: Launching a Decade of Disruption in Spinal Cord Injury Research. Journal of Neurotrauma, 2021, 38, 1251-1266.	3.4	14
96	Decoding the evolving grasping gesture from electroencephalographic (EEG) activity. , 2013, 2013, 5590-3.		13
97	Continuous and Discontinuous Drawing: High Temporal Variability Exists Only in Discontinuous Circling in Young Children. Journal of Motor Behavior, 2008, 40, 391-399.	0.9	12
98	Decoding hand and cursor kinematics from magnetoencephalographic signals during tool use. , 2008, 2008, 5306-9.		12
99	Unscented Kalman filter for neural decoding of human treadmill walking from non-invasive electroencephalography. , 2016, 2016, 1548-1551.		12
100	Robotic Assistance of Human Motion Using Active-Backdrivability on a Geared Electromagnetic Motor. International Journal of Advanced Robotic Systems, 2016, 13, 40.	2.1	12
101	Prediction of lower-limb joint kinematics from surface EMG during overground locomotion. , 2017, , .		12
102	Real-Time Seizure State Tracking Using Two Channels: A Mixed-Filter Approach. , 2019, , .		12
103	Independent component analysis of resting brain activity reveals transient modulation of local cortical processing by transcranial direct current stimulation. , 2011, 2011, 8102-5.		11
104	Towards a Portable Magnetoencephalography Based Brain Computer Interface with Optically-Pumped Magnetometers. , 2020, 2020, 3420-3423.		11
105	Characterization of the Stages of Creative Writing With Mobile EEG Using Generalized Partial Directed Coherence. Frontiers in Human Neuroscience, 2020, 14, 577651.	2.0	11
106	Chapter 15 The gating functions of the basal ganglia in movement control. Progress in Brain Research, 1999, 121, 261-276.	1.4	10
107	Learning Multiple Visuomotor Transformations: Adaptation and Context-Dependent Recall. Motor Control, 2004, 8, 534-546.	0.6	10
108	Towards a whole body brain-machine interface system for decoding expressive movement intent Challenges and Opportunities. , 2017, , .		10

#	Article	IF	CITATIONS
109	Multi-Trial Gait Adaptation of Healthy Individuals during Visual Kinematic Perturbations. Frontiers in Human Neuroscience, 2017, 11, 320.	2.0	10
110	Equilibria and Dynamics of a Neural Network Model for Opponent Muscle Control. , 1993, , 439-457.		10
111	Regression-based reconstruction of human grip force trajectories with noninvasive scalp electroencephalography. Journal of Neural Engineering, 2019, 16, 066030.	3.5	9
112	Concerns in the Blurred Divisions Between Medical and Consumer Neurotechnology. IEEE Systems Journal, 2021, 15, 3069-3080.	4.6	9
113	Compact and low-cost tendon vibrator for inducing proprioceptive illusions. , 2009, , .		8
114	Reconstructing surface EMG from scalp EEG during myoelectric control of a closed looped prosthetic device. , 2013, 2013, 5602-5.		8
115	A pre-clinical framework for neural control of a therapeutic upper-limb exoskeleton. , 2013, , 1159-1162.		8
116	A Mixed Filtering Approach for Real-Time Seizure State Tracking Using Multi-Channel Electroencephalography Data. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 2037-2045.	4.9	8
117	A Roadmap Towards Standards for Neurally Controlled End Effectors. IEEE Open Journal of Engineering in Medicine and Biology, 2021, 2, 84-90.	2.3	8
118	Adaptation to display rotation and display gain distortions during drawing. Human Movement Science, 2003, 22, 173-187.	1.4	7
119	Hemodynamic correlates of visuomotor motor adaptation by functional Near Infrared Spectroscopy. , 2010, 2010, 2918-21.		7
120	Novel compliant actuator for wearable robotics applications. , 2013, 2013, 2854-7.		7
121	Prediction of EMG envelopes of multiple terrains over-ground walking from EEG signals using an unscented Kalman filter. , 2017, , .		7
122	A neural model of basal ganglia?thalamocortical relations in normal and parkinsonian movement. Biological Cybernetics, 1995, 73, 467-476.	1.3	7
123	Functionally biarticular control for smart prosthetics. , 2009, , .		6
124	A model for altered neural network dynamics related to prehension movements in Parkinson disease. Biological Cybernetics, 2009, 100, 271-287.	1.3	6
125	Modeling of visuospatial perspectives processing and modulation of the fronto-parietal network activity during action imitation. , 2012, 2012, 2551-4.		6
126	Auditory–motor integration of subliminal phase shifts in tapping: better than auditory discrimination would predict. Experimental Brain Research, 2014, 232, 1207-1218.	1.5	6

#	Article	IF	CITATIONS
127	Predicting hand forces from scalp electroencephalography during isometric force production and object grasping. , 2015, 2015, 7570-3.		6
128	EEG-based brain-computer interface to a virtual walking avatar engages cortical adaptation. , 2017, , .		6
129	Classification and Transfer Learning of EEG during a Kinesthetic Motor Imagery Task using Deep Convolutional Neural Networks. , 2019, 2019, 3046-3049.		6
130	Emotion Recognition by Point Process Characterization of Heartbeat Dynamics. , 2019, , .		6
131	Standardization of Neurotechnology for Brain-Machine Interfacing: State of the Art and Recommendations. IEEE Open Journal of Engineering in Medicine and Biology, 2021, 2, 71-73.	2.3	6
132	Brain Processes and Neurofeedback for Performance Enhancement of Precision Motor Behavior. Lecture Notes in Computer Science, 2009, , 810-817.	1.3	6
133	Neural Network Models for Reaching and Dexterous Manipulation in Humans and Anthropomorphic Robotic Systems. , 2011, , 187-217.		6
134	Simulated neural dynamics of decision-making in an auditory delayed match-to-sample task. Biological Cybernetics, 2008, 99, 15-27.	1.3	5
135	Graphonomics and its contribution to the field of motor behavior: A position statement. Human Movement Science, 2015, 43, 165-168.	1.4	5
136	Electrocortical amplitude modulations of human level-ground, slope, and stair walking. , 2017, 2017, 1913-1916.		5
137	Your Brain on Art: A New Paradigm to Study Artistic Creativity Based on the â€~Exquisite Corpse' Using Mobile Brain-Body Imaging. , 2019, , 283-308.		5
138	Decoding neural activity preceding balance loss during standing with a lower-limb exoskeleton using an interpretable deep learning model. Journal of Neural Engineering, 2022, 19, 036015.	3.5	5
139	Neural dynamics of hand pre-shaping during prehension. , 0, , .		4
140	Task-Specific Modulation of Human Auditory Evoked Response in a Delayed-Match-To-Sample Task. Frontiers in Psychology, 2011, 2, 85.	2.1	4
141	Cortical network modeling for inverse kinematic computation of an anthropomorphic finger. , 2011, 2011, 8251-4.		4
142	Reply to comment on â€Fast attainment of computer cursor control with noninvasively acquired brain signals'. Journal of Neural Engineering, 2011, 8, 058002.	3.5	4
143	Classification of stand-to-sit and sit-to-stand movement from low frequency EEG with locality preserving dimensionality reduction. , 2013, 2013, 6341-4.		4
144	Observation-based training for neuroprosthetic control of grasping by amputees. , 2014, 2014, 3989-92.		4

Observation-based training for neuroprosthetic control of grasping by amputees. , 2014, 2014, 3989-92. 144

#	Article	IF	CITATIONS
145	Identifying engineering, clinical and patient's metrics for evaluating and quantifying performance of brain-machine interface (BMI) systems. , 2014, 2014, 1489-1492.		4
146	A NEURAL NETWORK MODEL OF MOVEMENT PRODUCTION IN PARKINSON'S DISEASE AND HUNTINGTON'S DISEASE IN Neural Processing, 1996, , 377-392.	0.3	4
147	Effects of transcutaneous spinal stimulation on spatiotemporal cortical activation patterns: a proof-of-concept EEG study. Journal of Neural Engineering, 2022, 19, 046001.	3.5	4
148	Visuo-motor adaptation in smokeless tobacco users. Nicotine and Tobacco Research, 1999, 1, 219-227.	2.6	3
149	Learning of spatial relationships between observed and imitated actions allows invariant inverse computation in the frontal mirror neuron system. , 2011, 2011, 4183-6.		3
150	Cortex inspired model for inverse kinematics computation for a humanoid robotic finger. , 2012, 2012, 3052-5.		3
151	Observation-based calibration of brain-machine interfaces for grasping. , 2013, , .		3
152	Decoding of intentional actions from scalp electroencephalography (EEG) in freely-behaving infants. , 2014, 2014, 2115-8.		3
153	Cortical features of locomotion-mode transitions via non-invasive EEG. , 2017, , .		3
154	Risk and adverse events related to lower-limb exoskeletons. , 2017, , .		3
155	A Translational Roadmap for a Brain-Machine-Interface (BMI) System for Rehabilitation. , 2019, , .		3
156	Movement decoding from noninvasive neural signals. , 2010, 2010, 2825-8.		2
157	15th International Graphonomics Society Conference (IGS 2011). Human Movement Science, 2013, 32, 997-998.	1.4	2
158	Classification of finger vibrotactile input using scalp EEG. , 2015, 2015, 4717-20.		2
159	Towards the development of a hybrid neural-machine interface for volitional control of a powered lower limb prosthesis. , 2017, , .		2
160	Control architecture and network communication for a pediatric exoskeleton. , 2017, , .		2
161	Towards a Unified Framework for De-noising Neural Signals. , 2019, 2019, 620-623.		2
162	Into the Mind of an Artist: Convergent Research at the Nexus of Art, Science, and Technology. Springer Series on Bio- and Neurosystems, 2019, , 61-74.	0.2	2

#	Article	IF	CITATIONS
163	Deep Learning Methods for EEG Neural Classification. , 2022, , 1-39.		2
164	Image segmentation through Gabor-based neural networks. , 1992, , .		1
165	The creative brain: Symmetry breaking in motor imagery. Behavioral and Brain Sciences, 1994, 17, 204-205.	0.7	1
166	Reply to Letter to the Editor "H215O PET responses to deep brain stimulation― Brain Stimulation, 2013, 6, 94-95.	1.6	1
167	A Novel Experimental and Analytical Approach to the Multimodal Neural Decoding of Intent During Social Interaction in Freely-behaving Human Infants. Journal of Visualized Experiments, 2015, , .	0.3	1
168	Neural decoding of robot-assisted gait during rehabilitation after stroke. , 2017, , .		1
169	EEG-based Neural Decoding of Gait in Developing Children. , 2019, , .		1
170	Assessment of Biomechanical Predictors of Occurrence of Low-Amplitude N1 Potentials Evoked by Naturally Occurring Postural Instabilities. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 476-485.	4.9	1
171	Multimodal real-world mapping and navigation system for autonomous mobile robots based on neural maps. , 1992, , .		0
172	Comparison of Neurosensorimotor Adaptation Under Kinematic and Dynamic Distortions. , 2007, , .		0
173	Design principles for noninvasive brain-machine interfaces. , 2011, 2011, 4223-6.		0
174	DETERMINATION OF TRAJECTORIES USING NON-INVASIVE BCI TECHNIQUES IN 3D ENVIRONMENTS. , 2013, , .		0
175	Preliminary results from a stroke rehabilitation protocol utilizing a robotic BMI-exoskeleton system. , 2017, , .		0
176	Development of a pediatric lower-extremity gait system. , 2017, , .		0
177	At the Crossroads of Art and Science: Neuroaesthetics Begins to Come into Its Own. Leonardo, 2019, 52, 103-106.	0.3	0
178	Fitness and Cognitive Decline of the Aging Brain - A Preliminary Investigation. Medicine and Science in Sports and Exercise, 2008, 40, S90.	0.4	0
179	A Fast BCS/FCS Algorithm for Image Segmentation. , 1993, , 251-254.		0
180	Towards a Roadmap for Neuroaesthetics. Springer Series on Bio- and Neurosystems, 2019, , 215-220.	0.2	0

#	Article	IF	CITATIONS
181	Introduction: The Confluence of Art, Neuroscience, and Creativity Through Mobile Brain–Body Imaging. Springer Series on Bio- and Neurosystems, 2019, , 1-3.	0.2	Ο