Colin J Jackson

List of Publications by Citations

Source: https://exaly.com/author-pdf/550535/colin-j-jackson-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

61 151 4,404 37 h-index g-index citations papers 5,606 7.8 179 5.52 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
151	Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. <i>ISME Journal</i> , 2016 , 10, 761-77	11.9	319
150	Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. <i>Microbiology and Molecular Biology Reviews</i> , 2010 , 74, 58-80	13.2	281
149	The role of protein dynamics in the evolution of new enzyme function. <i>Nature Chemical Biology</i> , 2016 , 12, 944-950	11.7	166
148	Diminishing returns and tradeoffs constrain the laboratory optimization of an enzyme. <i>Nature Communications</i> , 2012 , 3, 1257	17.4	156
147	Evolutionary optimization of computationally designed enzymes: Kemp eliminases of the KE07 series. <i>Journal of Molecular Biology</i> , 2010 , 396, 1025-42	6.5	132
146	The enzymatic basis for pesticide bioremediation. <i>Indian Journal of Microbiology</i> , 2008 , 48, 65-79	3.7	120
145	Reconstructing a missing link in the evolution of a recently diverged phosphotriesterase by active-site loop remodeling. <i>Biochemistry</i> , 2012 , 51, 6047-55	3.2	109
144	Identification and characterization of two families of F420 H2-dependent reductases from Mycobacteria that catalyse aflatoxin degradation. <i>Molecular Microbiology</i> , 2010 , 78, 561-75	4.1	105
143	Sensing and signaling of oxidative stress in chloroplasts by inactivation of the SAL1 phosphoadenosine phosphatase. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E4567-76	11.5	101
142	Conformational sampling, catalysis, and evolution of the bacterial phosphotriesterase. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 21631-6	11.5	93
141	Physiology, Biochemistry, and Applications of F420- and Fo-Dependent Redox Reactions. <i>Microbiology and Molecular Biology Reviews</i> , 2016 , 80, 451-93	13.2	88
140	Structure and function of an insect Etarboxylesterase (Esterase7) associated with insecticide resistance. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 10177-82	11.5	84
139	The evolution of new enzyme function: lessons from xenobiotic metabolizing bacteria versus insecticide-resistant insects. <i>Evolutionary Applications</i> , 2011 , 4, 225-48	4.8	78
138	In crystallo capture of a Michaelis complex and product-binding modes of a bacterial phosphotriesterase. <i>Journal of Molecular Biology</i> , 2008 , 375, 1189-96	6.5	78
137	Improving a natural enzyme activity through incorporation of unnatural amino acids. <i>Journal of the American Chemical Society</i> , 2011 , 133, 326-33	16.4	67
136	LTP Induction Boosts Glutamate Spillover by Driving Withdrawal of Perisynaptic Astroglia. <i>Neuron</i> , 2020 , 108, 919-936.e11	13.9	65
135	Substrate-promoted formation of a catalytically competent binuclear center and regulation of reactivity in a glycerophosphodiesterase from Enterobacter aerogenes. <i>Journal of the American Chemical Society</i> , 2008 , 130, 14129-38	16.4	64

(2012-2005)

134	The structure of an enzyme-product complex reveals the critical role of a terminal hydroxide nucleophile in the bacterial phosphotriesterase mechanism. <i>Biochimica Et Biophysica Acta - Proteins and Proteomics</i> , 2005 , 1752, 56-64	4	64	
133	Protein engineering with unnatural amino acids. Current Opinion in Structural Biology, 2013, 23, 581-7	8.1	63	
132	The structure and function of a novel glycerophosphodiesterase from Enterobacter aerogenes. <i>Journal of Molecular Biology</i> , 2007 , 367, 1047-62	6.5	62	
131	Growth of Escherichia coli coexpressing phosphotriesterase and glycerophosphodiester phosphodiesterase, using paraoxon as the sole phosphorus source. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 404-12	4.8	62	
130	Ancestral Protein Reconstruction Yields Insights into Adaptive Evolution of Binding Specificity in Solute-Binding Proteins. <i>Cell Chemical Biology</i> , 2016 , 23, 236-245	8.2	59	
129	Laboratory evolution of protein conformational dynamics. <i>Current Opinion in Structural Biology</i> , 2018 , 50, 49-57	8.1	56	
128	Catalytic improvement and evolution of atrazine chlorohydrolase. <i>Applied and Environmental Microbiology</i> , 2009 , 75, 2184-91	4.8	54	
127	Anomalous scattering analysis of Agrobacterium radiobacter phosphotriesterase: the prominent role of iron in the heterobinuclear active site. <i>Biochemical Journal</i> , 2006 , 397, 501-8	3.8	52	
126	Evolution of cyclohexadienyl dehydratase from an ancestral solute-binding protein. <i>Nature Chemical Biology</i> , 2018 , 14, 542-547	11.7	51	
125	Use of engineered enzymes to identify organophosphate and pyrethroid-related toxicity in toxicity identification evaluations. <i>Environmental Science & Environmental Science &</i>	10.3	51	
124	Reverse evolution leads to genotypic incompatibility despite functional and active site convergence. <i>ELife</i> , 2015 , 4,	8.9	51	
123	Characterization of the phenylurea hydrolases A and B: founding members of a novel amidohydrolase subgroup. <i>Biochemical Journal</i> , 2009 , 418, 431-41	3.8	50	
122	The evolution of multiple active site configurations in a designed enzyme. <i>Nature Communications</i> , 2018 , 9, 3900	17.4	50	
121	Sequence-Structure-Function Classification of a Catalytically Diverse Oxidoreductase Superfamily in Mycobacteria. <i>Journal of Molecular Biology</i> , 2015 , 427, 3554-3571	6.5	47	
120	Construction of a robust and sensitive arginine biosensor through ancestral protein reconstruction. <i>Protein Science</i> , 2015 , 24, 1412-22	6.3	47	
119	Bridging the synaptic gap: neuroligins and neurexin I in Apis mellifera. <i>PLoS ONE</i> , 2008 , 3, e3542	3.7	46	
118	The methanogenic redox cofactor F is widely synthesized by aerobic soil bacteria. <i>ISME Journal</i> , 2017 , 11, 125-137	11.9	43	
117	Intramolecular epistasis and the evolution of a new enzymatic function. <i>PLoS ONE</i> , 2012 , 7, e39822	3.7	42	

116	A polymer surfactant corona dynamically replaces water in solvent-free protein liquids and ensures macromolecular flexibility and activity. <i>Journal of the American Chemical Society</i> , 2012 , 134, 13168-71	16.4	41
115	An integrative analysis of non-coding regulatory DNA variations associated with autism spectrum disorder. <i>Molecular Psychiatry</i> , 2019 , 24, 1707-1719	15.1	38
114	Monitoring hippocampal glycine with the computationally designed optical sensor GlyFS. <i>Nature Chemical Biology</i> , 2018 , 14, 861-869	11.7	36
113	T-dependent B cell responses to Plasmodium induce antibodies that form a high-avidity multivalent complex with the circumsporozoite protein. <i>PLoS Pathogens</i> , 2017 , 13, e1006469	7.6	36
112	A revised biosynthetic pathway for the cofactor F in prokaryotes. <i>Nature Communications</i> , 2019 , 10, 155	5 8 :7.4	35
111	Higher-order epistasis shapes the fitness landscape of a xenobiotic-degrading enzyme. <i>Nature Chemical Biology</i> , 2019 , 15, 1120-1128	11.7	35
110	Protein engineering: the potential of remote mutations. <i>Biochemical Society Transactions</i> , 2019 , 47, 701	-₹. <u>1</u> 1	34
109	Testing the evolvability of an insect carboxylesterase for the detoxification of synthetic pyrethroid insecticides. <i>Insect Biochemistry and Molecular Biology</i> , 2012 , 42, 343-52	4.5	34
108	Molecular basis for the behavioral effects of the odorant degrading enzyme Esterase 6 in Drosophila. <i>Scientific Reports</i> , 2017 , 7, 46188	4.9	33
107	Conformational Tinkering Drives Evolution of a Promiscuous Activity through Indirect Mutational Effects. <i>Biochemistry</i> , 2016 , 55, 4583-93	3.2	33
106	Denisovan, modern human and mouse TNFAIP3 alleles tune A20 phosphorylation and immunity. <i>Nature Immunology</i> , 2019 , 20, 1299-1310	19.1	29
105	A 5000-fold increase in the specificity of a bacterial phosphotriesterase for malathion through combinatorial active site mutagenesis. <i>PLoS ONE</i> , 2014 , 9, e94177	3.7	28
104	Structure-based rational design of a phosphotriesterase. <i>Applied and Environmental Microbiology</i> , 2009 , 75, 5153-6	4.8	28
103	The effects of substrate orientation on the mechanism of a phosphotriesterase. <i>Organic and Biomolecular Chemistry</i> , 2005 , 3, 4343-50	3.9	27
102	The Structure and Stability of the Disulfide-Linked B-Crystallin Dimer Provide Insight into Oxidation Products Associated with Lens Cataract Formation. <i>Journal of Molecular Biology</i> , 2019 , 431, 483-497	6.5	27
101	Evolution of Protein Quaternary Structure in Response to Selective Pressure for Increased Thermostability. <i>Journal of Molecular Biology</i> , 2016 , 428, 2359-2371	6.5	26
100	Increased expression of a bacterial phosphotriesterase in Escherichia coli through directed evolution. <i>Protein Expression and Purification</i> , 2005 , 41, 433-40	2	25
99	Kistamicin biosynthesis reveals the biosynthetic requirements for production of highly crosslinked glycopeptide antibiotics. <i>Nature Communications</i> , 2019 , 10, 2613	17.4	24

(2010-2016)

98	The Redox Cofactor F Protects Mycobacteria from Diverse Antimicrobial Compounds and Mediates a Reductive Detoxification System. <i>Applied and Environmental Microbiology</i> , 2016 , 82, 6810-6818	4.8	23
97	Malonate-bound structure of the glycerophosphodiesterase from Enterobacter aerogenes (GpdQ) and characterization of the native Fe2+ metal-ion preference. <i>Acta Crystallographica Section F: Structural Biology Communications</i> , 2008 , 64, 681-5		21
96	Mycobacterial FH-Dependent Reductases Promiscuously Reduce Diverse Compounds through a Common Mechanism. <i>Frontiers in Microbiology</i> , 2017 , 8, 1000	5.7	20
95	Probing the mechanisms for the selectivity and promiscuity of methyl parathion hydrolase. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2016 , 374,	3	19
94	Mining electron density for functionally relevant protein polysterism in crystal structures. <i>Cellular and Molecular Life Sciences</i> , 2011 , 68, 1829-41	10.3	19
93	Structural and evolutionary approaches to the design and optimization of fluorescence-based small molecule biosensors. <i>Current Opinion in Structural Biology</i> , 2019 , 57, 31-38	8.1	18
92	Predicting nitroimidazole antibiotic resistance mutations in Mycobacterium tuberculosis with protein engineering. <i>PLoS Pathogens</i> , 2020 , 16, e1008287	7.6	18
91	Pharmacokinetics of OpdA, an organophosphorus hydrolase, in the African green monkey. <i>Biochemical Pharmacology</i> , 2010 , 80, 1075-9	6	18
90	Cryptic genetic variation shapes the adaptive evolutionary potential of enzymes. <i>ELife</i> , 2019 , 8,	8.9	18
89	Rv2074 is a novel F420 H2 -dependent biliverdin reductase in Mycobacterium tuberculosis. <i>Protein Science</i> , 2016 , 25, 1692-709	6.3	18
88	Ancestral sequence reconstruction for protein engineers. <i>Current Opinion in Structural Biology</i> , 2021 , 69, 131-141	8.1	18
87	Conformational Disorganization within the Active Site of a Recently Evolved Organophosphate Hydrolase Limits Its Catalytic Efficiency. <i>Biochemistry</i> , 2016 , 55, 1408-17	3.2	17
86	Synthesis of a D-ring isomer of galanthamine via a radical-based Smiles rearrangement reaction. Journal of Organic Chemistry, 2014 , 79, 6759-64	4.2	17
85	Competing S(N)2 and E2 reaction pathways for hexachlorocyclohexane degradation in the gas phase, solution and enzymes. <i>Chemical Communications</i> , 2011 , 47, 976-8	5.8	17
84	Local Efficacy of Glutamate Uptake Decreases with Synapse Size. Cell Reports, 2020, 32, 108182	10.6	17
83	Overcoming insecticide resistance through computational inhibitor design. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 21012-21021	11.5	16
82	Evolutionary expansion of the amidohydrolase superfamily in bacteria in response to the synthetic compounds molinate and diuron. <i>Applied and Environmental Microbiology</i> , 2015 , 81, 2612-24	4.8	16
81	Mutation of outer-shell residues modulates metal ion co-ordination strength in a metalloenzyme. <i>Biochemical Journal</i> , 2010 , 429, 313-21	3.8	16

80	Use of OpdA, an organophosphorus (OP) hydrolase, prevents lethality in an African green monkey model of acute OP poisoning. <i>Toxicology</i> , 2014 , 317, 1-5	4.4	15
79	Protonation state of F420H2 in the prodrug-activating deazaflavin dependent nitroreductase (Ddn) from Mycobacterium tuberculosis. <i>Molecular BioSystems</i> , 2016 , 12, 1110-3		15
78	Structure of an Insecticide Sequestering Carboxylesterase from the Disease Vector Culex quinquefasciatus: What Makes an Enzyme a Good Insecticide Sponge?. <i>Biochemistry</i> , 2017 , 56, 5512-55.	2 <i>5</i> ^{3.2}	14
77	Kinetic and sequence-structure-function analysis of known LinA variants with different hexachlorocyclohexane isomers. <i>PLoS ONE</i> , 2011 , 6, e25128	3.7	14
76	Altered conformational sampling along an evolutionary trajectory changes the catalytic activity of an enzyme. <i>Nature Communications</i> , 2020 , 11, 5945	17.4	14
75	Classification and substrate head-group specificity of membrane fatty acid desaturases. <i>Computational and Structural Biotechnology Journal</i> , 2016 , 14, 341-349	6.8	14
74	Structural Basis for the Allosteric Regulation of the SbtA Bicarbonate Transporter by the P-like Protein, SbtB, from sp. PCC7001. <i>Biochemistry</i> , 2019 , 58, 5030-5039	3.2	14
73	Kinetics and efficacy of an organophosphorus hydrolase in a rodent model of methyl-parathion poisoning. <i>Academic Emergency Medicine</i> , 2010 , 17, 736-40	3.4	12
72	Mapping the Accessible Conformational Landscape of an Insect Carboxylesterase Using Conformational Ensemble Analysis and Kinetic Crystallography. <i>Structure</i> , 2016 , 24, 977-87	5.2	12
71	Cofactor F420-Dependent Enzymes: An Under-Explored Resource for Asymmetric Redox Biocatalysis. <i>Catalysts</i> , 2019 , 9, 868	4	12
70	nonribosomal peptide synthetase Ebony encodes an atypical condensation domain. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 2913-2918	11.5	11
69	Iron(III) located in the dinuclear metallo-Elactamase IMP-1 by pseudocontact shifts. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 14269-72	16.4	11
68	Phosphorescent oxygen-sensing and singlet oxygen production by a biosynthetic silk. <i>RSC Advances</i> , 2016 , 6, 39530-39533	3.7	11
67	Rangefinder: A Semisynthetic FRET Sensor Design Algorithm. <i>ACS Sensors</i> , 2016 , 1, 1286-1290	9.2	10
66	300-Fold increase in production of the Zn2+-dependent dechlorinase TrzN in soluble form via apoenzyme stabilization. <i>Applied and Environmental Microbiology</i> , 2014 , 80, 4003-11	4.8	10
65	Cofactor Tail Length Modulates Catalysis of Bacterial F-Dependent Oxidoreductases. <i>Frontiers in Microbiology</i> , 2017 , 8, 1902	5.7	10
64	Strategies for Increasing Protein Stability. <i>Methods in Molecular Biology</i> , 2020 , 2073, 163-181	1.4	10
63	Total Syntheses of the 3-Pyrrolo[2,3-]quinolone-Containing Alkaloids Marinoquinolines A-F, K, and Aplidiopsamine A Using a Palladium-Catalyzed Ullmann Cross-Coupling/Reductive Cyclization Pathway Journal of Organic Chemistry 2020, 85, 650-663	4.2	10

62	Structural and functional characterization of a putative de novo gene in Drosophila. <i>Nature Communications</i> , 2021 , 12, 1667	17.4	10
61	The Synthesis of Certain Derivatives and Analogues of (-)- and (+)-Galanthamine and an Assessment of their Capacities to Inhibit Acetylcholine Esterase. <i>Journal of Organic Chemistry</i> , 2017 , 82, 7869-7886	4.2	9
60	Predicting X-ray diffuse scattering from translation-libration-screw structural ensembles. <i>Acta Crystallographica Section D: Biological Crystallography</i> , 2015 , 71, 1657-67		9
59	Structures of a non-ribosomal peptide synthetase condensation domain suggest the basis of substrate selectivity. <i>Nature Communications</i> , 2021 , 12, 2511	17.4	9
58	Consensus Mutagenesis and Ancestral Reconstruction Provide Insight into the Substrate Specificity and Evolution of the Front-End B -Desaturase Family. <i>Biochemistry</i> , 2020 , 59, 1398-1409	3.2	8
57	Hydrophobic Shielding Drives Catalysis of Hydride Transfer in a Family of FH-Dependent Enzymes. <i>Biochemistry</i> , 2016 , 55, 6908-6918	3.2	8
56	The purification, crystallization and preliminary diffraction of a glycerophosphodiesterase from Enterobacter aerogenes. <i>Acta Crystallographica Section F: Structural Biology Communications</i> , 2006 , 62, 659-61		8
55	Immunizations with diverse sarbecovirus receptor-binding domains elicit SARS-CoV-2 neutralizing antibodies against a conserved site of vulnerability. <i>Immunity</i> , 2021 ,	32.3	8
54	A Comprehensive Phylogenetic Analysis of the Serpin Superfamily. <i>Molecular Biology and Evolution</i> , 2021 , 38, 2915-2929	8.3	8
53	Constrained evolution of a bispecific enzyme: lessons for biocatalyst design. <i>Organic and Biomolecular Chemistry</i> , 2017 , 15, 937-946	3.9	7
52	Active Site Desolvation and Thermostability Trade-Offs in the Evolution of Catalytically Diverse Triazine Hydrolases. <i>Biochemistry</i> , 2016 , 55, 6304-6313	3.2	7
51	FAD-sequestering proteins protect mycobacteria against hypoxic and oxidative stress. <i>Journal of Biological Chemistry</i> , 2019 , 294, 2903-2912	5.4	7
50	Bacterial catabolism of s-triazine herbicides: biochemistry, evolution and application. <i>Advances in Microbial Physiology</i> , 2020 , 76, 129-186	4.4	6
49	Sequential Electrostatic Assembly of a Polymer Surfactant Corona Increases Activity of the Phosphotriesterase arPTE. <i>Bioconjugate Chemistry</i> , 2019 , 30, 2771-2776	6.3	6
48	Enzyme dynamics and engineering: one step at a time. Chemistry and Biology, 2014, 21, 1259-1260		6
47	Hydrogel-Immobilized Supercharged Proteins. <i>Advanced Biology</i> , 2018 , 2, 1700240	3.5	6
46	Ancestral Protein Reconstruction and Circular Permutation for Improving the Stability and Dynamic Range of FRET Sensors. <i>Methods in Molecular Biology</i> , 2017 , 1596, 71-87	1.4	5
45	Structural reconstruction of protein ancestry. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 3897-3902	11.5	5

44	Crystal structure of the mouse interleukin-3 Eleceptor: insights into interleukin-3 binding and receptor activation. <i>Biochemical Journal</i> , 2014 , 463, 393-403	3.8	5
43	The NK Landscape as a Versatile Benchmark for Machine Learning Driven Protein Engineering		5
42	The Evolution of New Catalytic Mechanisms for Xenobiotic Hydrolysis in Bacterial Metalloenzymes. <i>Australian Journal of Chemistry</i> , 2016 , 69, 1383	1.2	5
41	The molecular basis for the neofunctionalization of the juvenile hormone esterase duplication in Drosophila. <i>Insect Biochemistry and Molecular Biology</i> , 2019 , 106, 10-18	4.5	5
40	Total Syntheses of the Amaryllidaceae Alkaloids Zephycandidine III and Lycosinine A and Their Evaluation as Inhibitors of Acetylcholinesterase. <i>European Journal of Organic Chemistry</i> , 2017 , 2017, 404	14-405	3 ⁴
39	Devising New Syntheses of the Alkaloid Galanthamine, a Potent and Clinically Deployed Inhibitor of Acetylcholine Esterase. <i>Strategies and Tactics in Organic Synthesis</i> , 2015 , 29-50	0.2	4
38	Cellular and Structural Basis of Synthesis of the Unique Intermediate Dehydro-F-0 in Mycobacteria. <i>MSystems</i> , 2020 , 5,	7.6	4
37	Avid binding by B cells to the Plasmodium circumsporozoite protein repeat suppresses responses to protective subdominant epitopes. <i>Cell Reports</i> , 2021 , 35, 108996	10.6	4
36	Challenges of short substrate analogues as SARS-CoV-2 main protease inhibitors. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2021 , 50, 128333	2.9	4
35	The evolution and engineering of enzyme activity through tuning conformational landscapes. <i>Protein Engineering, Design and Selection</i> , 2021 , 34,	1.9	4
34	Engineering a solid-state metalloprotein hydrogen evolution catalyst. <i>Scientific Reports</i> , 2020 , 10, 3774	4.9	3
33	Dynamic Motion and Communication in the Streptococcal C1 Phage Lysin, PlyC. <i>PLoS ONE</i> , 2015 , 10, e01	140 2 219	93
32	Through-Space Scalar F-F Couplings between Fluorinated Noncanonical Amino Acids for the Detection of Specific Contacts in Proteins. <i>Journal of the American Chemical Society</i> , 2021 , 143, 19587-1	9 ¹ 598	3
31	Altered conformational sampling along an evolutionary trajectory changes the catalytic activity of an enzyme		3
30	A computationally designed fluorescent biosensor for D-serine		3
29	Potent Cyclic Peptide Inhibitors of FXIIa Discovered by mRNA Display with Genetic Code Reprogramming. <i>Journal of Medicinal Chemistry</i> , 2021 , 64, 7853-7876	8.3	3
28	Resonant Dielectric Metagratings for Response Intensified Optical Sensing. <i>Advanced Functional Materials</i> , 2021 , 2103143	15.6	3
27	Carboxylesterases in the Metabolism and Toxicity of Pesticides 2011 , 57-75		2

Directed Evolution of Enzymes 2010, 723-749 26 2 Cloning, expression, purification, crystallization and preliminary X-ray studies of a pyridoxine 5Sphosphate oxidase from Mycobacterium smegmatis. Acta Crystallographica Section F: Structural 25 Biology Communications, 2008, 64, 435-7 Adventures on the routes of protein evolution - in memoriam Dan Salah Tawfik (1955 - 2021)... 6.5 24 2 Journal of Molecular Biology, 2022, 434, 167462 Avid binding by B cells to the Plasmodium circumsporozoite protein repeat suppresses responses 23 to protective subdominant epitopes Higher-order epistatic networks underlie the evolutionary fitness landscape of a 22 2 xenobiotic-degrading enzyme The evolution of nitroimidazole antibiotic resistance in Mycobacterium tuberculosis 21 2 High avidity drives the interaction between the streptococcal C1 phage endolysin, PlyC, with the 4.1 20 2 cell surface carbohydrates of Group A Streptococcus. Molecular Microbiology, 2021, 116, 397-415 Human SIRT1 Multispecificity Is Modulated by Active-Site Vicinity Substitutions during Natural 19 8.3 Evolution. Molecular Biology and Evolution, 2021, 38, 545-556 Regulatory adenylnucleotide-mediated binding of the PII-like protein SbtB to the cyanobacterial 18 2 bicarbonate transporter SbtA is controlled by the cellular energy state Antiviral cyclic peptides targeting the main protease of SARS-CoV-2.. Chemical Science, 2022, 13, 3826-3836 17 Method for Developing Optical Sensors Using a Synthetic Dye-Fluorescent Protein FRET Pair and 16 1.4 1 Computational Modeling and Assessment. Methods in Molecular Biology, 2017, 1596, 89-99 Pseudokontaktverschiebungen lokalisieren Eisen(III) in der zweikernigen Metallo-Laktamase 3.6 15 IMP-1. Angewandte Chemie, **2014**, 126, 14494-14497 A Rationally and Computationally Designed Fluorescent Biosensor for d-Serine. ACS Sensors, 2021, 14 9.2 1 6, 4193-4205 Directed Evolution of Enzymes 2010, 654-673 13 Cellular and structural basis of synthesis of the unique intermediate dehydro-F420-0 in mycobacteria 12 1 Enhancement of metallomacrocycle-based oxygen reduction catalysis through immobilization in a 11 4.2 tunable silk-protein scaffold. Journal of Inorganic Biochemistry, 2020, 204, 110960 Potency boost of a dihydrofolate reductase inhibitor by multienzyme FH-dependent reduction. 10 11.5 1 Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, Mutational and biophysical robustness in a prestabilized monobody. Journal of Biological Chemistry, 5.4 **2021**, 296, 100447

8 Improved production of the non-native cofactor F in Escherichia coli. Scientific Reports, 2021, 11, 21774 4.9 О Substrate Dynamics Contribute to Enzymatic Specificity in Human and Bacterial Methionine Adenosyltransferases.. Jacs Au, 2021, 1, 2349-2360 Computational design and experimental characterisation of a stable human heparanase variant.. 6 О 3 RSC Chemical Biology, **2022**, 3, 341-349 Evo-velocity: Protein language modeling accelerates the study of evolution.. Cell Systems, 2022, 13, 271-273 Predicting nitroimidazole antibiotic resistance mutations in Mycobacterium tuberculosis with protein engineering 2020, 16, e1008287 Predicting nitroimidazole antibiotic resistance mutations in Mycobacterium tuberculosis with protein engineering 2020, 16, e1008287 Predicting nitroimidazole antibiotic resistance mutations in Mycobacterium tuberculosis with

Predicting nitroimidazole antibiotic resistance mutations in Mycobacterium tuberculosis with

protein engineering **2020**, 16, e1008287

protein engineering **2020**, 16, e1008287