Ivan Jozic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/55050/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Frontiers in Lichen Planopilaris and Frontal Fibrosing Alopecia Research: Pathobiology Progress and Translational Horizons. JID Innovations, 2022, 2, 100113.	2.4	8
2	Dichotomous role of miR193b-3p in diabetic foot ulcers maintains inhibition of healing and suppression of tumor formation. Science Translational Medicine, 2022, 14, eabg8397.	12.4	5
3	Wound Healing Assay for Melanoma Cell Migration. Methods in Molecular Biology, 2021, 2265, 65-71.	0.9	19
4	A Cell Membrane-Level Approach to Cicatricial Alopecia Management: Is Caveolin-1 a Viable Therapeutic Target in Frontal Fibrosing Alopecia?. Biomedicines, 2021, 9, 572.	3.2	5
5	Cellular reprogramming of diabetic foot ulcer fibroblasts triggers proâ€healing miRNAâ€mediated epigenetic signature. Experimental Dermatology, 2021, 30, 1065-1072.	2.9	10
6	Glucocorticoid-mediated induction of caveolin-1 disrupts cytoskeletal organization, inhibits cell migration and re-epithelialization of non-healing wounds. Communications Biology, 2021, 4, 757.	4.4	13
7	Diabetic Wound-Healing Science. Medicina (Lithuania), 2021, 57, 1072.	2.0	141
8	Intracellular Staphylococcus aureus triggers pyroptosis and contributes to inhibition of healing due to perforin-2 suppression. Journal of Clinical Investigation, 2021, 131, .	8.2	27
9	The importance of caveolins and caveolae to dermatology: Lessons from the caves and beyond. Experimental Dermatology, 2020, 29, 136-148.	2.9	17
10	Multimodal, in Situ Imaging of Ex Vivo Human Skin Reveals Decrease of Cholesterol Sulfate in the Neoepithelium during Acute Wound Healing. Analytical Chemistry, 2020, 92, 1386-1394.	6.5	12
11	Clinical Implications of Cellular Senescence on Wound Healing. Current Dermatology Reports, 2020, 9, 286-297.	2.1	7
12	Deregulated immune cell recruitment orchestrated by FOXM1 impairs human diabetic wound healing. Nature Communications, 2020, 11, 4678.	12.8	151
13	Pharmacological and Genetic Inhibition of Caveolin-1 Promotes Epithelialization and Wound Closure. Molecular Therapy, 2019, 27, 1992-2004.	8.2	30
14	Single cell analyses reveal specific distribution of antiâ€bacterial molecule Perforinâ€2 in human skin and its modulation by wounding and <i>Staphylococcus aureus</i> infection. Experimental Dermatology, 2019, 28, 225-232.	2.9	28
15	Mevastatin promotes healing by targeting caveolin-1 to restore EGFR signaling. JCI Insight, 2019, 4, .	5.0	34
16	Mesenchymal stromal cells prevent bleomycinâ€induced lung and skin fibrosis in aged mice and restore wound healing. Journal of Cellular Physiology, 2018, 233, 5503-5512.	4.1	38
17	Staphylococcus aureus Triggers Induction of miR-15B-5P to Diminish DNA Repair and Deregulate Inflammatory Response in Diabetic Foot Ulcers. Journal of Investigative Dermatology, 2018, 138, 1187-1196.	0.7	80
18	A Modeling Conundrum: MurineÂModels for Cutaneous WoundÂHealing. Journal of Investigative Dermatology, 2018, 138, 736-740.	0.7	43

Ivan Jozic

#	Article	IF	CITATIONS
19	Stress Signals, Mediated by Membranous Glucocorticoid Receptor, Activate PLC/PKC/GSK-3β/β-catenin Pathway toÂInhibit Wound Closure. Journal of Investigative Dermatology, 2017, 137, 1144-1154.	0.7	59
20	Mineralocorticoid Receptor Antagonists—A New Sprinkle of Salt and Youth. Journal of Investigative Dermatology, 2016, 136, 1938-1941.	0.7	8
21	Skin under the (Spot)-Light: Cross-Talk with the Central Hypothalamic–Pituitary–Adrenal (HPA) Axis. Journal of Investigative Dermatology, 2015, 135, 1469-1471.	0.7	25
22	Nanoparticles for Fidgety Cell Movement and Enhanced Wound Healing. Journal of Investigative Dermatology, 2015, 135, 2151-2153.	0.7	7
23	Stressing the Steroids in Skin: Paradox or Fine-Tuning?. Journal of Investigative Dermatology, 2014, 134, 2869-2872.	0.7	23
24	Effect of EGF-receptor tyrosine kinase inhibitor on Rab5 function during endocytosis. Archives of Biochemistry and Biophysics, 2012, 525, 16-24.	3.0	16
25	Inhibition of Rab5 Activation During Insulin Receptor-Mediated Endocytosis. , 2011, 1, 20-32.		3