Manuel Angeles-Castellanos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5504914/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of the circadian system and relevance of periodic signals for neonatal development. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 179, 249-258.	1.8	7
2	Chocolate for breakfast prevents circadian desynchrony in experimental models of jet-lag and shift-work. Scientific Reports, 2020, 10, 6243.	3.3	25
3	Enfermedad pulmonar obstructiva crónica (EPOC) Bases para el médico general. Revista De La Facultad De Medicina, Universidad Nacional Autonoma De Mexico, 2020, 63, 28-35.	0.1	5
4	A Complete and State of the Art Pre-mortem Diagnostic Approach to Creutzfeldt-Jakob Disease: A Case Report. Neurology India, 2020, 68, 927.	0.4	0
5	Importancia del uso adecuado del equipo de protección individual y la implementación de protocolos de seguridad perioperatorios durante la pandemia de COVID-19. Revista De La Facultad De Medicina, Universidad Nacional Autonoma De Mexico, 2020, 63, 49-59.	0.1	4
6	Cognitive E-Tools for Diagnosing the State of Medical Knowledge in Students Enrolled for a Second Time in an Anatomy Course. International Journal of Learning, Teaching and Educational Research, 2020, 19, 341-362.	0.6	2
7	Social jet-lag potentiates obesity and metabolic syndrome when combined with cafeteria diet in rats. Metabolism: Clinical and Experimental, 2017, 72, 83-93.	3.4	34
8	Scheduled meal accelerates entrainment to a 6â€h phase advance by shifting central and peripheral oscillations in rats. European Journal of Neuroscience, 2017, 46, 1875-1886.	2.6	16
9	Loss of melatonin daily rhythmicity is asociated with delirium development in hospitalized older adults. Sleep Science, 2016, 9, 285-288.	1.0	26
10	A light/dark cycle in the NICU accelerates body weight gain and shortens time to discharge in preterm infants. Early Human Development, 2014, 90, 535-540.	1.8	69
11	Disruption of circadian rhythms due to chronic constant light leads to depressive and anxiety-like behaviors in the rat. Behavioural Brain Research, 2013, 252, 1-9.	2.2	134
12	Scheduled meals and scheduled palatable snacks synchronize circadian rhythms: Consequences for ingestive behavior. Physiology and Behavior, 2011, 104, 555-561.	2.1	37
13	Scheduled Food Hastens Re-Entrainment More Than Melatonin Does after a 6-h Phase Advance of the Light-Dark Cycle in Rats. Journal of Biological Rhythms, 2011, 26, 324-334.	2.6	37
14	Interaction between hypothalamic dorsomedial nucleus and the suprachiasmatic nucleus determines intensity of food anticipatory behavior. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5813-5818.	7.1	154
15	In a Rat Model of Night Work, Activity during the Normal Resting Phase Produces Desynchrony in the Hypothalamus. Journal of Biological Rhythms, 2010, 25, 421-431.	2.6	50
16	Altered Fos immunoreactivity in the hypothalamus after glucose administration in pre- and post-weaning malnourished rats. Nutritional Neuroscience, 2010, 13, 152-160.	3.1	2
17	Food Intake during the Normal Activity Phase Prevents Obesity and Circadian Desynchrony in a Rat Model of Night Work. Endocrinology, 2010, 151, 1019-1029.	2.8	270
18	The suprachiasmatic nucleus participates in food entrainment: a lesion study. Neuroscience, 2010, 165, 1115-1126.	2.3	43

#	Article	IF	CITATIONS
19	Differential Effects of a Restricted Feeding Schedule on Clock-Gene Expression in the Hypothalamus of the Rat. Chronobiology International, 2009, 26, 808-820.	2.0	42
20	Peripheral oscillators: the driving force for foodâ€anticipatory activity. European Journal of Neuroscience, 2009, 30, 1665-1675.	2.6	82
21	Internal desynchronization in a model of night-work by forced activity in rats. Neuroscience, 2008, 154, 922-931.	2.3	137
22	Expectancy for food or expectancy for chocolate reveals timing systems for metabolism and reward. Neuroscience, 2008, 155, 297-307.	2.3	78
23	Restricted feeding schedules phase shift daily rhythms of c-Fos and protein Per1 immunoreactivity in corticolimbic regions in rats. Neuroscience, 2007, 144, 344-355.	2.3	128
24	Unpredictable feeding schedules unmask a system for daily resetting of behavioural and metabolic food entrainment. European Journal of Neuroscience, 2007, 26, 2804-2814.	2.6	50
25	7.3. Metabolic adaptations under food entrainment. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2007, 148, S29-S30.	1.8	0
26	A daily palatable meal without food deprivation entrains the suprachiasmatic nucleus of rats. European Journal of Neuroscience, 2005, 22, 2855-2862.	2.6	84
27	Food entrainment modifies the c-Fos expression pattern in brain stem nuclei of rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R678-R684.	1.8	42
28	Behavioral and physiological adaptations in rats during food-entrainment. Biological Rhythm Research, 2005, 36, 99-108.	0.9	3
29	Metabolic parameters are food-entrained in rats made cirrhotic by chronic CCl4treatment. Biological Rhythm Research, 2005, 36, 39-45.	0.9	1
30	Differential role of the accumbens Shell and Core subterritories in food-entrained rhythms of rats. Behavioural Brain Research, 2005, 158, 133-142.	2.2	62
31	Entrainment by a palatable meal induces food-anticipatory activity and c-Fos expression in reward-related areas of the brain. Neuroscience, 2005, 133, 293-303.	2.3	103
32	Dissociation between adipose tissue signals, behavior and the food-entrained oscillator. Journal of Endocrinology, 2004, 181, 53-63.	2.6	59
33	c-Fos expression in hypothalamic nuclei of food-entrained rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 286, R158-R165.	1.8	112