Hao Suo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/550462/publications.pdf

Version: 2024-02-01

687363 752698 20 919 13 20 citations h-index g-index papers 20 20 20 1116 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Separation of Grape and Wine Proanthocyanidins According to Their Degree of Polymerization. Journal of Agricultural and Food Chemistry, 1998, 46, 1390-1396.	5.2	271
2	Chemical characterization and antioxidant activities of oligomeric and polymeric procyanidin fractions from grape seeds. Food Chemistry, 2008, 108, 519-532.	8.2	197
3	Fractionation of red wine polyphenols by solid-phase extraction and liquid chromatography. Journal of Chromatography A, 2006, 1128, 27-38.	3.7	86
4	Preparative high-speed counter-current chromatography separation of grape seed proanthocyanidins according to degree of polymerization. Food Chemistry, 2017, 219, 399-407.	8.2	78
5	Preparative HSCCC isolation of phloroglucinolysis products from grape seed polymeric proanthocyanidins as new powerful antioxidants. Food Chemistry, 2015, 188, 422-429.	8.2	51
6	Compositional characterization study on high -molecular -mass polymeric polyphenols in red wines by chemical degradation. Food Research International, 2019, 123, 440-449.	6.2	31
7	Disposition of Astragaloside IV via Enterohepatic Circulation Is Affected by the Activity of the Intestinal Microbiome. Journal of Agricultural and Food Chemistry, 2015, 63, 6084-6093.	5.2	29
8	An approach for degradation of grape seed and skin proanthocyanidin polymers into oligomers by sulphurous acid. Food Chemistry, 2018, 256, 203-211.	8.2	26
9	High-performance liquid chromatography/electrospray ionization mass spectrometric characterization of new products formed by the reaction between flavanols and malvidin 3-glucoside in the presence of acetaldehyde. Rapid Communications in Mass Spectrometry, 2007, 21, 2227-2236.	1.5	17
10	Detailed phenolic composition of Vidal grape pomace by ultrahigh-performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1068-1069, 201-209.	2.3	17
11	Preparation and Antioxidant Activity of Ethyl-Linked Anthocyanin-Flavanol Pigments from Model Wine Solutions. Molecules, 2018, 23, 1066.	3.8	16
12	Advances in smart delivery of food bioactive compounds using stimuliâ€responsive carriers: Responsive mechanism, contemporary challenges, and prospects. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 5449-5488.	11.7	15
13	Red Wine High-Molecular-Weight Polyphenolic Complex: An Emerging Modulator of Human Metabolic Disease Risk and Gut Microbiota. Journal of Agricultural and Food Chemistry, 2021, 69, 10907-10919.	5. 2	14
14	A new class of anthocyaninâ€procyanidin condensation products detected in red wine by electrospray ionization multiâ€stage mass spectrometry analysis. Rapid Communications in Mass Spectrometry, 2010, 24, 254-260.	1.5	13
15	Simultaneous determination by LC-MS/MS of 25-methoxydammarane-3β,12β,20-triol epimers and active metabolites in rat plasma after intravenous administration. Xenobiotica, 2013, 43, 868-874.	1.1	12
16	Self-microemulsifying drug-delivery system for improved oral bioavailability of 20(S)-25-methoxyl-dammarane-3β, 12β, 20-triol: preparation and evaluation. International Journal of Nanomedicine, 2014, 9, 913.	6.7	11
17	Novel Catechin–Tiopronin Conjugates Derived from Grape Seed Proanthocyanidin Degradation: Process Optimization, High-Speed Counter-Current Chromatography Preparation, as Well as Antibacterial Activity. Journal of Agricultural and Food Chemistry, 2019, 67, 11508-11517.	5 . 2	11
18	Development and evaluation of a novel nanofibersolosome for enhancing the stability, in vitro bioaccessibility, and colonic delivery of cyanidin-3-O-glucoside. Food Research International, 2021, 149, 110712.	6.2	10

#	Article	IF	CITATIONS
19	Optimization of flash extraction, separation of ginsenosides, identification by HPLC-FT-ICR-MS and determination of rare ginsenosides in mountain cultivated ginseng. RSC Advances, 2020, 10, 44050-44057.	3.6	9
20	Separation of a family of antioxidantsÂflavan-3-ol thio-conjugates from procyanidins by high-speed counter-current chromatography. European Food Research and Technology, 2020, 246, 1017-1029.	3.3	5