David Virieux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5504428/publications.pdf

Version: 2024-02-01

64 papers 1,153 citations

331670
21
h-index

30 g-index

76 all docs 76 docs citations

76 times ranked 1221 citing authors

#	Article	IF	CITATIONS
1	Synthesis and Evaluation of Phosphorus Containing, Specific CDK9/CycT1 Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 3939-3965.	6.4	61
2	Oxaphosphinanes: New Therapeutic Perspectives for Glioblastoma. Journal of Medicinal Chemistry, 2012, 55, 2196-2211.	6.4	60
3	Aromatic dialdehyde precursors from lignin derivatives for the synthesis of formaldehyde-free and high char yield phenolic resins. European Polymer Journal, 2016, 77, 65-74.	5.4	59
4	Mechanochemical Rearrangements. Journal of Organic Chemistry, 2021, 86, 13885-13894.	3.2	57
5	Oxaphospholene and oxaphosphinene heterocycles via RCM using unsymmetrical phosphonates or functional phosphinates. Tetrahedron, 2010, 66, 758-764.	1.9	53
6	Enantioselective reactions catalyzed by phosphine oxides. Tetrahedron, 2019, 75, 4385-4418.	1.9	41
7	Pallado-catalysed P-arylations and P-vinylation of 2-hydrogeno-2-oxo-1,4,2-oxazaphosphinanes. Tetrahedron, 2005, 61, 7029-7036.	1.9	35
8	Diastereoselective Addition of 2H-2-Oxo-1,4,2-oxazaphosphinanes to Aldehydes and Imines. Journal of Organic Chemistry, 2005, 70, 7035-7041.	3.2	35
9	<i>C</i> -Glycoside Mimetics Inhibit Glioma Stem Cell Proliferation, Migration, and Invasion. Journal of Medicinal Chemistry, 2014, 57, 8293-8306.	6.4	34
10	Neuroprotection in non-transgenic and transgenic mouse models of Alzheimer's disease by positive modulation of $lf1$ receptors. Pharmacological Research, 2019, 144, 315-330.	7.1	33
11	Hydrophosphonylation of alkenes or nitriles by double radical transfer mediated by titanocene/propylene oxide. Tetrahedron Letters, 2011, 52, 6693-6696.	1.4	32
12	FeCl3-catalyzed addition of nitrogen and 1,3-dicarbonyl nucleophiles to olefins. Journal of Organometallic Chemistry, 2011, 696, 296-304.	1.8	32
13	First synthesis of P-aryl-phosphinosugars, organophosphorus analogues of C-arylglycosides. Tetrahedron Letters, 2005, 46, 3741-3744.	1.4	30
14	Double [3 + 2]-dimerisation cascade synthesis of bis(triazolyl)bisphosphanes, a new scaffold for bidentate bisphosphanes. Dalton Transactions, 2015, 44, 12539-12545.	3.3	29
15	Synthesis, reactivity and stereochemistry of new phosphorus heterocycles with 5- or 6-membered rings. Journal of Organometallic Chemistry, 2005, 690, 2472-2481.	1.8	28
16	Functionalized Phosphanylâ€Phosphonic Acids as Unusual Complexing Units as Analogues of Fosmidomycin. European Journal of Organic Chemistry, 2012, 2012, 3237-3248.	2.4	28
17	Dicorynamine and harmalan-N-oxide, two new \hat{l}^2 -carboline alkaloids from Dicorynia guianensis Amsh heartwood. Phytochemistry Letters, 2015, 12, 158-163.	1.2	28
18	Phostine PST3.1a Targets MGAT5 and Inhibits Glioblastoma-Initiating Cell Invasiveness and Proliferation. Molecular Cancer Research, 2017, 15, 1376-1387.	3.4	28

#	Article	IF	CITATIONS
19	Synthesis and Biological Applications of Phosphinates and Derivatives. Topics in Current Chemistry, 2014, 360, 39-114.	4.0	27
20	Synthesis of new \hat{l}_{\pm} or \hat{l}_{3} -functionalized hydroxymethylphosphinic acid derivatives. Tetrahedron, 2004, 60, 877-884.	1.9	26
21	Drug discovery: phosphinolactone, in vivo bioisostere of the lactol group. Organic and Biomolecular Chemistry, 2010, 8, 1438.	2.8	24
22	Phosphorus-Containing Bis-allenes: Synthesis and Heterocyclization Reactions Mediated by Iodine or Copper Dibromide. Organic Letters, 2017, 19, 1882-1885.	4.6	19
23	Diversity-Oriented Synthesis toward Aryl- and Phosphoryl-Functionalized Imidazo[1,2- <i>a</i>)pyridines. Journal of Organic Chemistry, 2020, 85, 14730-14743.	3.2	19
24	Kabachnik–Fields Reaction by Mechanochemistry: New Horizons from Old Methods. ACS Sustainable Chemistry and Engineering, 2020, 8, 18889-18902.	6.7	18
25	Chiral phosphinyl analogues of 2-C-arylmorpholinols: 2-aryl-3,5-diphenyl-[1,4,2]-oxazaphosphinanes. Tetrahedron: Asymmetry, 2006, 17, 1402-1408.	1.8	17
26	Highly Convergent Synthesis of Chiral Bicyclophosphinates by Domino Hydrophosphinylation/Michael/Michael Reaction. Organic Letters, 2011, 13, 5076-5079.	4.6	15
27	Structural Analogues of Selfotel. Journal of Organic Chemistry, 2016, 81, 4947-4954.	3.2	15
28	Synthesis and crystal structure of tris(2,3-triphenylenedioxy)cyclotriphosphazene: a new clathration system. CrystEngComm, 2011, 13, 6050.	2.6	14
29	The role of extractives in the natural durability of the heartwood of Dicorynia guianensis Amsh: new insights in antioxydant and antifungal properties. Annals of Forest Science, 2018, 75, 1.	2.0	14
30	Golden Face of Phosphine: Cascade Reaction to Bridgehead Methanophosphocines by Intramolecular Double Hydroarylation. Organic Letters, 2019, 21, 45-49.	4.6	14
31	1,1′-Dibenzyl-bis-(triazolyl)diphenylphosphine dioxide: a new efficient organocatalyst for silicon tetrachloride-mediated enantioselective Abramov-type phosphonylation of aldehydes with trialkyl phosphites. RSC Advances, 2017, 7, 52101-52104.	3.6	12
32	Phosphinyl analogues of hydroxybupropion: $(\hat{A}\pm)$ -2-aryl-3,3,5,5-tetramethyl-[1,4,2]-oxazaphosphinanes. Tetrahedron Letters, 2007, 48, 4695-4697.	1.4	11
33	Revisited Synthesis of Aryl-H-phosphinates. Synthesis, 2011, 2011, 2490-2494.	2.3	11
34	\hat{l}_{\pm} -Halogenated oxaphosphinanes: Synthesis, unexpected reactions and evaluation as inhibitors of cancer cell proliferation. European Journal of Medicinal Chemistry, 2015, 104, 33-41.	5. 5	11
35	Chiral Bisdiphenylphosphine Dioxides Bearing a Bis(triazolyl) Backbone as Promising Lewis Bases for Asymmetric Organocatalysis. European Journal of Organic Chemistry, 2018, 2018, 2267-2272.	2.4	11
36	Acyclic to cyclic aminophosphonic and phosphinic acids. Arkivoc, 2012, 2012, 264-277.	0.5	11

3

#	Article	IF	CITATIONS
37	Helical Phosphorus Derivatives. Advances in Heterocyclic Chemistry, 2015, , 37-83.	1.7	10
38	Phosphono- and Phosphinolactones in the Life Sciences. Advances in Heterocyclic Chemistry, 2016, , 129-193.	1.7	10
39	Facile and General Synthesis of Polyphosphane Polyoxides with (O)PCP(O) Linkages. European Journal of Organic Chemistry, 1999, 1999, 1561-1569.	2.4	9
40	An Original Approach to the Synthesis of Phosphorus-Carbon Heterocyclesâ [°] The 3-Oxo-2,3-dihydro-1,3-oxaphospholes. European Journal of Organic Chemistry, 2004, 2004, 3205-3211.	2.4	9
41	Synthesis of Unnatural Phosphonosugar Analogues. European Journal of Organic Chemistry, 2014, 2014, 1333-1337.	2.4	9
42	5-H-1,2-Oxaphosphole 2-oxides, key building blocks for diversity oriented chemical libraries. Tetrahedron, 2016, 72, 7912-7925.	1.9	9
43	Fifty Years of (Benz)oxaphospholene Chemistry. Chemistry - A European Journal, 2017, 23, 17413-17431.	3.3	9
44	Dramatic effect of modified boranes in diastereoselective reduction of chiral cyclic \hat{l}_{\pm} -ketophosphinates. RSC Advances, 2012, 2, 816-818.	3.6	8
45	Synthesis of a new family of acyclic nucleoside phosphonates, analogues of TPases transition states. Organic and Biomolecular Chemistry, 2012, 10, 3448.	2.8	8
46	Three-Step Synthesis of Chiral Spirocyclic Oxaphospholenes. Journal of Organic Chemistry, 2017, 82, 12439-12446.	3.2	8
47	Perfluorophenyl phosphonate analogues of aromatic amino acids: Synthesis, X-ray and DFT studies. Tetrahedron, 2018, 74, 975-986.	1.9	8
48	Diastereoselective Michael addition of 2H-2-oxo-1,4,2-oxaza phosphinanes to olefins. Tetrahedron, 2011, 67, 540-545.	1.9	7
49	Crystal structure of tris(binol)cyclotriphosphazene. A new clathration system. Tetrahedron Letters, 2016, 57, 4086-4089.	1.4	7
50	Synthesis of Oxaphosphinaneâ€Based Pseudodisaccharides. European Journal of Organic Chemistry, 2017, 2017, 5357-5369.	2.4	6
51	Gold-Catalyzed Access to Isophosphinoline 2-Oxides. Journal of Organic Chemistry, 2021, 86, 7813-7824.	3.2	6
52	Fosmidomycin analogues with N-hydroxyimidazole and N-hydroxyimidazolone as a chelating unit. RSC Advances, 2014, 4, 23770-23778.	3.6	5
53	Chemical bibliographic databases: the influence of term indexing policies on topic searches. New Journal of Chemistry, 2015, 39, 8807-8817.	2.8	5
54	HPLC Analysis and Cytotoxicity of n-Butanol Extract from Glyphaea brevis Roots Against C6 Glioma Cells. Scientia Pharmaceutica, 2014, 82, 171-176.	2.0	4

#	Article	IF	CITATIONS
55	Driving the Morita–Baylis–Hillman Reaction to a Multicomponent Organic Transformation. European Journal of Organic Chemistry, 2014, 2014, 788-796.	2.4	4
56	$\hat{l}_{\pm},\hat{l}_{\pm}$ -Difluoro- \hat{l}^2 -iminophosphonates, an alternative strategy towards the synthesis of $\hat{l}_{\pm},\hat{l}_{\pm}$ -difluoro- \hat{l}^2 -aminophosphonate derivatives. New Journal of Chemistry, 2017, 41, 6322-6333.	2.8	4
57	Synthesis of unnatural 2- and 3-deoxyfuranose analogues. Tetrahedron Letters, 2014, 55, 3706-3708.	1.4	3
58	Efficient Synthesis of 2â€Aminoâ€1â€Arylethanols Through a Lewis Baseâ€Catalyzed SiCl 4 â€Mediated Asymmet Passeriniâ€Type Reaction. European Journal of Organic Chemistry, 2020, 2020, 6497-6500.	tric 2.4	3
59	Synthesis, structural studies and biological properties of some phosphono-perfluorophenylalanine derivatives formed by S _N Ar reactions. RSC Advances, 2019, 9, 24117-24133.	3.6	2
60	Fluorinated phosphonate analogues of phenylalanine: Synthesis, X-ray and DFT studies. Arabian Journal of Chemistry, 2020, 13, 2384-2399.	4.9	2
61	Mechanochemical synthesis of mononuclear gold(i) halide complexes of diphosphine ligands with tuneable luminescent properties. Dalton Transactions, 2021, 50, 13337-13344.	3.3	2
62	Preparation of gem-difluorinated retrohydroxamic-fosmidomycin. Arkivoc, 2015, 2015, 117-126.	0.5	2
63	New Approaches toward Building C _{sp} â^'P bond: A Twoâ€Decade Overview. Chemistry - A European Journal, 2022, 28, .	3.3	2
64	Synthesis of unnatural 3′-phospha-2′-deoxyfuranose nucleoside analogues. Tetrahedron Letters, 2014, 55, 6328-6330.	1.4	0