Mariusz Michalczyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5504317/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Implications of monomer deformation for tetrel and pnicogen bonds. Physical Chemistry Chemical Physics, 2018, 20, 8832-8841.	1.3	67
2	Coordination of anions by noncovalently bonded $\tilde{I}f$ -hole ligands. Coordination Chemistry Reviews, 2020, 405, 213136.	9.5	66
3	Regium bonds between M _n clusters (M = Cu, Ag, Au and <i>n</i> = 2–6) and nucleophiles NH ₃ and HCN. Physical Chemistry Chemical Physics, 2018, 20, 22498-22509.	1.3	46
4	Comparison between Tetrel Bonded Complexes Stabilized by if and $i\in$ Hole Interactions. Molecules, 2018, 23, 1416.	1.7	45
5	Aerogen bonds formed between AeOF ₂ (Ae = Kr, Xe) and diazines: comparisons between σ-hole and π-hole complexes. Physical Chemistry Chemical Physics, 2018, 20, 4676-4687.	1.3	36
6	Theoretical Studies of IR and NMR Spectral Changes Induced by Sigma-Hole Hydrogen, Halogen, Chalcogen, Pnicogen, and Tetrel Bonds in a Model Protein Environment. Molecules, 2019, 24, 3329.	1.7	35
7	Noncovalent Bonds through Sigma and Pi-Hole Located on the Same Molecule. Guiding Principles and Comparisons. Molecules, 2021, 26, 1740.	1.7	32
8	Anionâ‹â‹Anion Attraction in Complexes of MCl ₃ ^{â^'} (M=Zn, Cd, Hg) with CN ^{â^'} . ChemPhysChem, 2020, 21, 1119-1125.	1.0	31
9	On the ability of pnicogen atoms to engage in both σ and ï€-hole complexes. Heterodimers of ZF2C6H5 (Z = P, As, Sb, Bi) and NH3. Journal of Molecular Modeling, 2019, 25, 152.	0.8	29
10	How Many Pnicogen Bonds can be Formed to a Central Atom Simultaneously?. Journal of Physical Chemistry A, 2020, 124, 2046-2056.	1.1	29
11	Dual Geometry Schemes in Tetrel Bonds: Complexes between TF4 (T = Si, Ge, Sn) and Pyridine Derivatives. Molecules, 2019, 24, 376.	1.7	28
12	Chalcogen bonding of two ligands to hypervalent YF ₄ (Y = S, Se, Te, Po). Physical Chemistry Chemical Physics, 2019, 21, 20829-20839.	1.3	27
13	Trielâ€Bonded Complexes between TrR ₃ (Tr=B, Al, Ga; R=H, F, Cl, Br, CH ₃) and Pyrazine. ChemPhysChem, 2018, 19, 3122-3133.	1.0	25
14	Hexacoordinated Tetrelâ€Bonded Complexes between TF ₄ (T=Si, Ge, Sn, Pb) and NCH: Competition between Ïf―and Ï€â€Holes. ChemPhysChem, 2019, 20, 959-966.	1.0	25
15	On the Stability of Interactions between Pairs of Anions – Complexes of MCl ₃ ^{â^'} (M=Be, Mg, Ca, Sr, Ba) with Pyridine and CN ^{â^'} . ChemPhysChem, 2020, 21, 870-877.	1.0	25
16	Crystallographic and Theoretical Evidences of Anionâ‹â‹â‹Anion Interaction. ChemPhysChem, 2021, 22, 818-821.	1.0	25
17	Noncovalent Bonds between Tetrel Atoms. ChemPhysChem, 2020, 21, 1934-1944.	1.0	24
18	Pnicogen Bonds Pairing Anionic Lewis Acid with Neutral and Anionic Bases. Journal of Physical Chemistry A, 2020, 124, 4998-5006.	1.1	24

MARIUSZ MICHALCZYK

#	Article	IF	CITATIONS
19	Influence of monomer deformation on the competition between two types of σ-holes in tetrel bonds. Physical Chemistry Chemical Physics, 2019, 21, 10336-10346.	1.3	20
20	Competition between Intra and Intermolecular Triel Bonds. Complexes between Naphthalene Derivatives and Neutral or Anionic Lewis Bases. Molecules, 2020, 25, 635.	1.7	20
21	Anion–anion and anion–neutral triel bonds. Physical Chemistry Chemical Physics, 2021, 23, 4818-4828.	1.3	19
22	Pnictogen bonding in pyrazine•PnX5 (Pn = P, As, Sb and X = F, Cl, Br) complexes. Journal of Molecular Modeling, 2017, 23, 328.	0.8	18
23	Anionâ√anion (MX ₃ ^{â^}) ₂ dimers (M = Zn, Cd, Hg; X = Cl, Br, I) in different environments. Physical Chemistry Chemical Physics, 2021, 23, 13853-13861.	1.3	16
24	Structures and energetics of clusters surrounding diatomic anions stabilized by hydrogen, halogen, and other noncovalent bonds. Chemical Physics, 2020, 530, 110590.	0.9	15
25	Synthesis, crystal structure, DFT calculations, molecular docking study and Hirshfeld surface analysis of alkoxido-bridged dinuclear iron(III) complex. Research on Chemical Intermediates, 2020, 46, 4155-4171.	1.3	15
26	On the opposite trends of correlations between interaction energies and electrostatic potentials of chlorinated and methylated amine complexes stabilized by halogen bond. Theoretical Chemistry Accounts, 2017, 136, 1.	0.5	14
27	Experimental and Theoretical Studies of Dimers Stabilized by Two Chalcogen Bonds in the Presence of a N···N Pnicogen Bond. Journal of Physical Chemistry A, 2021, 125, 657-668.	1.1	14
28	Structures of clusters surrounding ions stabilized by hydrogen, halogen, chalcogen, and pnicogen bonds. Chemical Physics, 2019, 524, 55-62.	0.9	13
29	Anion–Anion Interactions in Aerogen-Bonded Complexes. Influence of Solvent Environment. Molecules, 2021, 26, 2116.	1.7	13
30	Nature of the interaction between ammonia derivatives and carbon disulfide. A theoretical investigation. International Journal of Quantum Chemistry, 2017, 117, e25369.	1.0	12
31	Sâ<¬N chalcogen bonded complexes of carbon disulfide with diazines. Theoretical study. Chemical Physics, 2018, 500, 37-44.	0.9	12
32	The role of hydrogen bonding in π··π stacking interactions in Ni(II) complex derived from triethanolamine: synthesis, crystal structure, antimicrobial, and DFT studies. Research on Chemical Intermediates, 2019, 45, 5649-5664.	1.3	11
33	Ability of Lewis Acids with Shallow σ-Holes to Engage in Chalcogen Bonds in Different Environments. Molecules, 2021, 26, 6394.	1.7	9
34	Synthesis, characterization, DFT optimization and anticancer evaluation of phosphanegold(I) dithiocarbamates. Journal of Molecular Structure, 2020, 1218, 128486.	1.8	8
35	Competition between Inter and Intramolecular Tetrel Bonds: Theoretical Studies Complemented by CSD Survey. ChemPhysChem, 2021, 22, 924-934.	1.0	7
36	Experimental and theoretical evidence of attractive interactions between dianions: [PdCl ₄] ^{2â^'} â<¯[PdCl ₄] ^{2â^'} . Chemical Communications, 2021, 57, 13305-13308.	2.2	7

#	Article	IF	CITATIONS
37	Iron (III) complex exhibiting efficient catechol oxidase activity: Experimental, kinetic and theoretical approach. Journal of Molecular Structure, 2022, 1252, 131685.	1.8	7
38	Triel bonds within anion ··· anion complexes. Physical Chemistry Chemical Physics, 2021, 23, 25097-25106.	1.3	6
39	Theoretical modeling of argentophilic interactions in [Ag(CN)2â^']3 trimer found in a copper(II) complex of cis-1,2-diaminocyclohexane (Dach), [Cu(Dach)2-Ag(CN)2-Cu(Dach)2][Ag(CN)2]3. Chemical Physics Letters, 2018, 709, 11-15.	1.2	4
40	The Role of Hydrogen Bonds in Interactions between [PdCl4]2â^' Dianions in Crystal. Molecules, 2022, 27, 2144.	1.7	4
41	Competition between Intra and Intermolecular Pnicogen Bonds. Complexes between Naphthalene Derivatives and Neutral or Anionic Bases. ChemPhysChem, 2022, , .	1.0	4
42	Experimental and Theoretical Evidence of a Pbâ‹â‹Pb Ditetrel Bond Without a Ïfâ€Hole. ChemPhysChem, 2 23, .	2022, 1.0	4
43	Crystal structure and theoretical investigation of bis(<i>cis</i> -1,2-diaminocyclohexane)zinc(II) tetrachloridozincate(II). Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2017, 72, 627-630.	0.3	3
44	Interactions of (MY)6 (M = Zn, Cd; Y = O, S, Se) quantum dots with N-bases. Structural Chemistry, 2019, 30, 1003-1014.	1.0	2
45	Possible coordination modes of copper(II) atom in model silsesquioxanes complexes at various pH conditions: DFT study. Chemical Physics Letters, 2021, 778, 138739.	1.2	2