Jung Min Sohn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5504214/publications.pdf

Version: 2024-02-01

516710 713466 49 556 16 21 citations g-index h-index papers 49 49 49 112 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effects of the rebounding of a striking ship on structural crashworthiness during ship-ship collision. Thin-Walled Structures, 2017, 115, 225-239.	5.3	51
2	Numerical Simulation for the Collision Between Side Structure and Level Ice in Event of Side Impact Scenario. Latin American Journal of Solids and Structures, 2016, 13, 2991-3004.	1.0	30
3	Tensile analysis and assessment of carbon and alloy steels using FE approach as an idealization of material fractures under collision and grounding. Curved and Layered Structures, 2020, 7, 188-198.	1.3	28
4	Analysis of structural behavior during collision event accounting for bow and side structure interaction. Theoretical and Applied Mechanics Letters, 2017, 7, 6-12.	2.8	26
5	Investigation of structural performance subjected to impact loading using finite element approach: case of ship-container collision. Curved and Layered Structures, 2020, 7, 17-28.	1.3	25
6	Energy behavior on side structure in event of ship collision subjected to external parameters. Heliyon, 2016, 2, e00192.	3.2	21
7	Simulation of the Behavior of a Ship Hull under Grounding: Effect of Applied Element Size on Structural Crashworthiness. Journal of Marine Science and Engineering, 2019, 7, 270.	2.6	21
8	Nonlinear analysis of inter-island RoRo under impact: effects of selected collision $\hat{a} \in \mathbb{T}^M$ s parameters on the crashworthy double-side structures. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40, 1.	1.6	20
9	Investigation on structural component behaviours of double bottom arrangement under grounding accidents. Theoretical and Applied Mechanics Letters, 2019, 9, 50-59.	2.8	20
10	The Effectiveness of Thin-Walled Hull Structures Against Collision Impact. Latin American Journal of Solids and Structures, 2017, 14, 1345-1360.	1.0	19
11	Crashworthiness assessment of thin-walled double bottom tanker: A variety of ship grounding incidents. Theoretical and Applied Mechanics Letters, 2019, 9, 320-327.	2.8	19
12	Analysis of Structural Crashworthiness and Estimating Safety Limit Accounting for Ship Collisions on Strait Territory. Latin American Journal of Solids and Structures, 2017, 14, 1594-1613.	1.0	18
13	A practical method to determine the dynamic fracture strain for the nonlinear finite element analysis of structural crashworthiness in ship–ship collisions. Ships and Offshore Structures, 2018, 13, 412-422.	1.9	18
14	Experimental study on ultimate strength of steel-welded ring-stiffened conical shell under external hydrostatic pressure. Marine Structures, 2019, 67, 102634.	3.8	18
15	Cavitation Prediction of Ship Propeller Based on Temperature and Fluid Properties of Water. Journal of Marine Science and Engineering, 2020, 8, 465.	2.6	18
16	Comparing Structural Casualties of the Ro-Ro Vessel Using Straight and Oblique Collision Incidents on the Car Deck. Journal of Marine Science and Engineering, 2019, 7, 183.	2.6	17
17	Nonlinear dynamic behaviors of outer shell and upper deck structures subjected to impact loading in maritime environment. Curved and Layered Structures, 2019, 6, 146-160.	1.3	14
18	CFD implementation to mitigate the LNG leakage consequences: A review of explosion accident calculation on LNG-fueled ships. Procedia Structural Integrity, 2022, 41, 343-350.	0.8	12

#	Article	IF	Citations
19	Rapid prediction of damage on a struck ship accounting for side impact scenario models. Open Engineering, 2017, 7, 91-99.	1.6	11
20	Structural Analysis of the Double Bottom Structure During Ship Grounding by Finite Element Approach. Latin American Journal of Solids and Structures, 2017, 14, 1106-1123.	1.0	11
21	Performance assessment on a variety of double side structure during collision interaction with other ship. Curved and Layered Structures, 2017, 4, 255-271.	1.3	10
22	CFD-based simulation of accidental fuel release from LNG-fuelled ships. Ships and Offshore Structures, 2020, , 1-20.	1.9	10
23	Ultimate Strength Assessment of Steel-Welded Hemispheres under External Hydrostatic Pressure. Journal of Marine Science and Application, 2020, 19, 615-633.	1.7	10
24	Effect of the selected parameters in idealizing material failures under tensile loads: Benchmarks for damage analysis on thin-walled structures. Curved and Layered Structures, 2022, 9, 258-285.	1.3	10
25	Experimental investigations on the implosion characteristics of thin cylindrical aluminium-alloy tubes. International Journal of Solids and Structures, 2020, 200-201, 64-82.	2.7	9
26	Implosion tests of aluminium-alloy ring-stiffened cylinders subjected to external hydrostatic pressure. Marine Structures, 2021, 78, 102980.	3.8	9
27	On the failure behaviour to striking bow penetration of impacted marine-steel structures. Curved and Layered Structures, 2018, 5, 68-79.	1.3	8
28	The effect of multi-stage modification on the performance of Savonius water turbines under the horizontal axis condition. Open Engineering, 2020, 10, 793-803.	1.6	8
29	Crashworthiness performance of stiffened bottom tank structure subjected to impact loading conditions: Ship-rock interaction. Curved and Layered Structures, 2019, 6, 245-258.	1.3	7
30	Layout optimization for safety evaluation on LNG-fueled ship under an accidental fuel release using mixed-integer nonlinear programming. International Journal of Naval Architecture and Ocean Engineering, 2022, 14, 100443.	2.3	7
31	Finite Element Analysis of Different Artificial Hip Stem Designs Based on Fenestration under Static Loading. Procedia Structural Integrity, 2020, 27, 101-108.	0.8	6
32	Procedure for determining design accidental loads in liquified-natural-gas-fuelled ships under explosion using a computational-fluid-dynamics-based simulation approach. Ships and Offshore Structures, 2022, 17, 2254-2271.	1.9	6
33	Investigation on the Structural Damage of a Double-Hull Ship, Part II – Grounding Impact. Procedia Structural Integrity, 2017, 5, 943-950.	0.8	5
34	Crashworthiness characteristic of longitudinal deck structures against identified accidental action in marine environment: a study case of ship–bow collision. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1.	1.6	5
35	Development of Numerical Modelling Techniques for Composite Cylindrical Structures under External Pressure. Journal of Marine Science and Engineering, 2022, 10, 466.	2.6	5
36	Mechanical behavior of thin-walled steel under hard contact with rigid seabed rock: Theoretical contact approach and nonlinear FE calculation. Journal of the Mechanical Behavior of Materials, 2021, 30, 156-170.	1.8	4

#	Article	IF	CITATIONS
37	Gas Dispersion Analysis on the Open Deck Fuel Storage Configuration of the LNG-Fueled Ship. Lecture Notes in Mechanical Engineering, 2020, , 109-118.	0.4	4
38	Structural assessment of a 500-cbm liquefied natural gas bunker ship during bunkering and marine operation under collision accidents. Ships and Offshore Structures, 2022, 17, 2379-2395.	1.9	3
39	Behavior Prediction of Ship Structure due to Side Impact Scenario by Dynamic-Nonlinear Finite Element Analysis. Applied Mechanics and Materials, 0, 862, 253-258.	0.2	2
40	Progressive structural failure of the RoRo side hull during accidental powered-bow collisions. AIP Conference Proceedings, 2018, , .	0.4	2
41	Dynamic structural response characteristics of new concept blast walls under hydrocarbon explosions. Latin American Journal of Solids and Structures, 2019, 16, .	1.0	2
42	Residual stresses distribution in long seam-welded offshore catenary riser of high-manganese steel. Ships and Offshore Structures, 2020, 15, 325-339.	1.9	2
43	Effects of Geometrical Variations on the Performance of Hull Plate Structures under Blast Load: A Study using Nonlinear FEA. Procedia Structural Integrity, 2022, 41, 282-289.	0.8	2
44	Optimisation of the design of a steel-welded pressure hull structure based on interactive nonlinear collapse strength analyses. Ships and Offshore Structures, 2020, , $1-16$.	1.9	1
45	Structural Assessment Review of Type-C Independent Tank in LNG Bunkering Ship. Lecture Notes in Mechanical Engineering, 2020, , 97-108.	0.4	1
46	Experimental and Numerical Studies on Fluid-Structure Interaction for Underwater Drop of a Stone-Breaking Crusher. Journal of Marine Science and Engineering, 2022, 10, 30.	2.6	1
47	Finite element analysis for estimating steel structure responses under a variety of marine-collision actions. International Journal of Earthquake and Impact Engineering, 2018, 2, 248.	0.3	0
48	Investigasi Dampak Insiden Tubrukan Terhadap Respon Struktur Kapal Penumpang Antar Pulau. Kapal, 2018, 15, 62-67.	0.2	0
49	Predicting the residual fatigue life of a cargo hull tank using a deep-learning technique. Journal of International Maritime Safety Environmental Affairs and Shipping, 2020, 4, 84-92.	0.8	0