
## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5504055/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Modulating mTOR Signaling as a Promising Therapeutic Strategy for Atherosclerosis. International<br>Journal of Molecular Sciences, 2022, 23, 1153.                                                                                                  | 1.8 | 11        |
| 2  | Local Accumulation of Lymphocytes in the Intima of Human Aorta Is Associated with Giant<br>Multinucleated Endothelial Cells: Possible Explanation for Mosaicism of Atherosclerosis.<br>International Journal of Molecular Sciences, 2022, 23, 1059. | 1.8 | 3         |
| 3  | The Role of the VEGF Family in Atherosclerosis Development and Its Potential as Treatment Targets.<br>International Journal of Molecular Sciences, 2022, 23, 931.                                                                                   | 1.8 | 36        |
| 4  | Atherosclerosis amelioration by allicin in raw garlic through gut microbiota and trimethylamine-N-oxide modulation. Npj Biofilms and Microbiomes, 2022, 8, 4.                                                                                       | 2.9 | 29        |
| 5  | Novel Models of Crohn's Disease Pathogenesis Associated with the Occurrence of Mitochondrial<br>Dysfunction in Intestinal Cells. International Journal of Molecular Sciences, 2022, 23, 5141.                                                       | 1.8 | 1         |
| 6  | Thirty-Five-Year History of Desialylated Lipoproteins Discovered by Vladimir Tertov. Biomedicines, 2022, 10, 1174.                                                                                                                                  | 1.4 | 6         |
| 7  | Role of Impaired Mitochondrial Dynamics Processes in the Pathogenesis of Alzheimer's Disease.<br>International Journal of Molecular Sciences, 2022, 23, 6954.                                                                                       | 1.8 | 22        |
| 8  | Aging of Vascular System Is a Complex Process: The Cornerstone Mechanisms. International Journal of<br>Molecular Sciences, 2022, 23, 6926.                                                                                                          | 1.8 | 2         |
| 9  | Effects of Metabolic Disorders in Immune Cells and Synoviocytes on the Development of Rheumatoid<br>Arthritis. Metabolites, 2022, 12, 634.                                                                                                          | 1.3 | 2         |
| 10 | The Role of Mitochondrial Abnormalities in Diabetic Cardiomyopathy. International Journal of<br>Molecular Sciences, 2022, 23, 7863.                                                                                                                 | 1.8 | 14        |
| 11 | An original biomarker for the risk of developing cardiovascular diseases and their complications:<br>Telomere length. Toxicology Reports, 2021, 8, 499-504.                                                                                         | 1.6 | 5         |
| 12 | Role of Telomeres Shortening in Atherogenesis: An Overview. Cells, 2021, 10, 395.                                                                                                                                                                   | 1.8 | 13        |
| 13 | Neuraminidases 1 and 3 Trigger Atherosclerosis by Desialylating Lowâ€Density Lipoproteins and<br>Increasing Their Uptake by Macrophages. Journal of the American Heart Association, 2021, 10, e018756.                                              | 1.6 | 29        |
| 14 | Two Subpopulations of Human Monocytes That Differ by Mitochondrial Membrane Potential.<br>Biomedicines, 2021, 9, 153.                                                                                                                               | 1.4 | 0         |
| 15 | Autophagy and Mitophagy as Essential Components of Atherosclerosis. Cells, 2021, 10, 443.                                                                                                                                                           | 1.8 | 23        |
| 16 | Mutations of mtDNA in some Vascular and Metabolic Diseases. Current Pharmaceutical Design, 2021, 27, 177-184.                                                                                                                                       | 0.9 | 4         |
| 17 | Immunopathology of Atherosclerosis and Related Diseases: Focus on Molecular Biology.<br>International Journal of Molecular Sciences, 2021, 22, 4080.                                                                                                | 1.8 | 23        |
| 18 | Atherosclerosis as Mitochondriopathy: Repositioning the Disease to Help Finding New Therapies.<br>Frontiers in Cardiovascular Medicine, 2021, 8, 660473.                                                                                            | 1.1 | 12        |

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Proatherogenic Sialidases and Desialylated Lipoproteins: 35 Years of Research and Current State from<br>Bench to Bedside. Biomedicines, 2021, 9, 600.                                | 1.4 | 26        |
| 20 | Anti-Inflammatory Therapy for Atherosclerosis: Focusing on Cytokines. International Journal of Molecular Sciences, 2021, 22, 7061.                                                   | 1.8 | 37        |
| 21 | Mitochondrial Lipid Homeostasis at the Crossroads of Liver and Heart Diseases. International Journal of Molecular Sciences, 2021, 22, 6949.                                          | 1.8 | 10        |
| 22 | Recognition of Oxidized Lipids by Macrophages and Its Role in Atherosclerosis Development.<br>Biomedicines, 2021, 9, 915.                                                            | 1.4 | 36        |
| 23 | Mitochondrial Dysfunction in Vascular Wall Cells and Its Role in Atherosclerosis. International<br>Journal of Molecular Sciences, 2021, 22, 8990.                                    | 1.8 | 38        |
| 24 | Macrophages and Foam Cells: Brief Overview of Their Role, Linkage, and Targeting Potential in Atherosclerosis. Biomedicines, 2021, 9, 1221.                                          | 1.4 | 33        |
| 25 | Some Molecular and Cellular Stress Mechanisms Associated with Neurodegenerative Diseases and Atherosclerosis. International Journal of Molecular Sciences, 2021, 22, 699.            | 1.8 | 11        |
| 26 | A Novel Insight at Atherogenesis: The Role of Microbiome. Frontiers in Cell and Developmental<br>Biology, 2020, 8, 586189.                                                           | 1.8 | 19        |
| 27 | Sialidase Activity in Human Blood Serum Has a Distinct Seasonal Pattern: A Pilot Study. Biology, 2020,<br>9, 184.                                                                    | 1.3 | 3         |
| 28 | Genetics of Arterial-Wall-Specific Mechanisms in Atherosclerosis: Focus on Mitochondrial<br>Mutations. Current Atherosclerosis Reports, 2020, 22, 54.                                | 2.0 | 4         |
| 29 | Lipid Metabolism in Macrophages: Focus on Atherosclerosis. Biomedicines, 2020, 8, 262.                                                                                               | 1.4 | 57        |
| 30 | Impact of Mitochondrial DNA Mutations on Carotid Intima-Media Thickness in the Novosibirsk Region.<br>Life, 2020, 10, 160.                                                           | 1.1 | 4         |
| 31 | Cellular Mechanisms of Human Atherogenesis: Focus on Chronification of Inflammation and<br>Mitochondrial Mutations. Frontiers in Pharmacology, 2020, 11, 642.                        | 1.6 | 28        |
| 32 | Mitochondrial Dysfunction and DNA Damage in the Context of Pathogenesis of Atherosclerosis.<br>Biomedicines, 2020, 8, 166.                                                           | 1.4 | 40        |
| 33 | The Diabetes Mellitus–Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and<br>Chronic Inflammation. International Journal of Molecular Sciences, 2020, 21, 1835. | 1.8 | 469       |
| 34 | Signaling Pathways and Key Genes Involved in Regulation of foam Cell Formation in Atherosclerosis.<br>Cells, 2020, 9, 584.                                                           | 1.8 | 67        |
| 35 | The Role of Mitochondria in Cardiovascular Diseases. Biology, 2020, 9, 137.                                                                                                          | 1.3 | 40        |
| 36 | Data on association of mitochondrial heteroplasmy with carotid intima-media thickness in subjects<br>from Russian and Kazakh populations. Data in Brief, 2020, 29, 105136.           | 0.5 | 7         |

| #  | Article                                                                                                                                                                                                                                                | IF         | CITATIONS    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|
| 37 | Role of Phagocytosis in the Pro-Inflammatory Response in LDL-Induced Foam Cell Formation; a<br>Transcriptome Analysis. International Journal of Molecular Sciences, 2020, 21, 817.                                                                     | 1.8        | 17           |
| 38 | Lipidâ€based gene delivery to macrophage mitochondria for atherosclerosis therapy. Pharmacology<br>Research and Perspectives, 2020, 8, e00584.                                                                                                         | 1.1        | 13           |
| 39 | Signaling Pathways Potentially Responsible for Foam Cell Formation: Cholesterol Accumulation or<br>Inflammatory Response—What is First?. International Journal of Molecular Sciences, 2020, 21, 2716.                                                  | 1.8        | 16           |
| 40 | Clinical Effectiveness of a Combination of Black Elder Berries, Violet Herb, and Calendula Flowers in<br>Chronic Obstructive Pulmonary Disease: The Results of a Double-Blinded Placebo-Controlled Study.<br>Biology, 2020, 9, 83.                     | 1.3        | 0            |
| 41 | Medicinal Plants as a Potential and Successful Treatment Option in the Context of Atherosclerosis.<br>Frontiers in Pharmacology, 2020, 11, 403.                                                                                                        | 1.6        | 34           |
| 42 | Oxidative Stress and Antioxidants in Atherosclerosis Development and Treatment. Biology, 2020, 9, 60.                                                                                                                                                  | 1.3        | 68           |
| 43 | Possible Role of Mitochondrial DNA Mutations in Chronification of Inflammation: Focus on<br>Atherosclerosis. Journal of Clinical Medicine, 2020, 9, 978.                                                                                               | 1.0        | 23           |
| 44 | Overview of OxLDL and Its Impact on Cardiovascular Health: Focus on Atherosclerosis. Frontiers in Pharmacology, 2020, 11, 613780.                                                                                                                      | 1.6        | 142          |
| 45 | Mitochondrion as a Selective Target for the Treatment of Atherosclerosis: Role of Mitochondrial DNA Mutations and Defective Mitophagy in the Pathogenesis of Atherosclerosis and Chronic Inflammation. Current Neuropharmacology, 2020, 18, 1064-1075. | 1.4        | 43           |
| 46 | Novel Approaches to Anti-atherosclerotic Therapy: Cell-based Models and Herbal Preparations (Review) Tj ETQo                                                                                                                                           | 0 0 0 rgBT | /Overlock 10 |
| 47 | The role of sialic acids in the initiation of atherosclerosis. Minerva Cardioangiologica, 2020, 68, 359-364.                                                                                                                                           | 1.2        | 5            |
| 48 | Comparative analysis of the variability of carotid intima-media thickness in primary prevention populations of Moscow and Paris. American Journal of Cardiovascular Disease, 2020, 10, 463-472.                                                        | 0.5        | 0            |
| 49 | Foam cell formation and cholesterol trafficking and metabolism disturbances in atherosclerosis. Cor<br>Et Vasa, 2019, 61, 48-55.                                                                                                                       | 0.1        | 14           |
| 50 | Modified and Dysfunctional Lipoproteins in Atherosclerosis: Effectors or Biomarkers?. Current<br>Medicinal Chemistry, 2019, 26, 1512-1524.                                                                                                             | 1.2        | 17           |
| 51 | Changes in Mitochondrial Genome Associated with Predisposition to Atherosclerosis and Related Disease. Biomolecules, 2019, 9, 377.                                                                                                                     | 1.8        | 25           |
| 52 | The Atherogenic Role of Circulating Modified Lipids in Atherosclerosis. International Journal of<br>Molecular Sciences, 2019, 20, 3561.                                                                                                                | 1.8        | 89           |
| 53 | Immune-Inflammatory Responses in Atherosclerosis: The Role of Myeloid Cells. Journal of Clinical<br>Medicine, 2019, 8, 1798.                                                                                                                           | 1.0        | 45           |
| 54 | Therapeutic effects of garlic in cardiovascular atherosclerotic disease. Chinese Journal of Natural<br>Medicines, 2019, 17, 721-728.                                                                                                                   | 0.7        | 31           |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Heteroplasmic Variants of Mitochondrial DNA in Atherosclerotic Lesions of Human Aortic Intima.<br>Biomolecules, 2019, 9, 455.                                                                                                      | 1.8 | 13        |
| 56 | Creation of Cybrid Cultures Containing mtDNA Mutations m.12315G>A and m.1555G>A, Associated with Atherosclerosis. Biomolecules, 2019, 9, 499.                                                                                      | 1.8 | 8         |
| 57 | Pericytes in Atherosclerosis. Advances in Experimental Medicine and Biology, 2019, 1147, 279-297.                                                                                                                                  | 0.8 | 16        |
| 58 | Modern approaches for modelling dystonia and Huntington's disease in vitro and in vivo.<br>International Journal of Experimental Pathology, 2019, 100, 64-71.                                                                      | 0.6 | 4         |
| 59 | 3. The significance of pericytes in health and disease: the role of pericytes with special focus on atherosclerosis. , 2019, , 34-52.                                                                                              |     | 0         |
| 60 | Sialidase activity in human pathologies. European Journal of Pharmacology, 2019, 842, 345-350.                                                                                                                                     | 1.7 | 60        |
| 61 | Glycosylation of human plasma lipoproteins reveals a high level of diversity, which directly impacts<br>their functional properties. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019,<br>1864, 643-653. | 1.2 | 19        |
| 62 | Creation of Cultures Containing Mutations Linked with Cardiovascular Diseases using Transfection and Genome Editing. Current Pharmaceutical Design, 2019, 25, 693-699.                                                             | 0.9 | 7         |
| 63 | The role of monocytosis and neutrophilia in atherosclerosis. Journal of Cellular and Molecular<br>Medicine, 2018, 22, 1366-1382.                                                                                                   | 1.6 | 48        |
| 64 | The role of mitochondrial dysfunction in cardiovascular disease: a brief review. Annals of Medicine, 2018, 50, 121-127.                                                                                                            | 1.5 | 299       |
| 65 | Inhibition of sialidase activity as a therapeutic approach. Drug Design, Development and Therapy, 2018,<br>Volume 12, 3431-3437.                                                                                                   | 2.0 | 37        |
| 66 | Mitochondrial diseases caused by mtDNA mutations: a mini-review. Therapeutics and Clinical Risk<br>Management, 2018, Volume 14, 1933-1942.                                                                                         | 0.9 | 49        |
| 67 | Matrix metalloproteinases in pro-atherosclerotic arterial remodeling. Journal of Molecular and<br>Cellular Cardiology, 2018, 123, 159-167.                                                                                         | 0.9 | 51        |
| 68 | Response to: Comment on "Role of Mitochondrial Genome Mutations in Pathogenesis of Carotid<br>Atherosclerosis― Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-3.                                                         | 1.9 | 1         |
| 69 | Modified lipoproteins as biomarkers of atherosclerosis. Frontiers in Bioscience - Landmark, 2018, 23, 1422-1444.                                                                                                                   | 3.0 | 18        |
| 70 | Mitochondrial Genome Mutations Associated with Myocardial Infarction. Disease Markers, 2018, 2018, 1-6.                                                                                                                            | 0.6 | 13        |
| 71 | Data on association of mitochondrial heteroplasmy and cardiovascular risk factors: Comparison of samples from Russian and Mexican populations. Data in Brief, 2018, 18, 16-21.                                                     | 0.5 | 11        |
| 72 | Cybrid Models of Pathological Cell Processes in Different Diseases. Oxidative Medicine and Cellular<br>Longevity, 2018, 2018, 1-6.                                                                                                 | 1.9 | 17        |

| #  | Article                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | LDL and foam cell formation as the basis of atherogenesis. Current Opinion in Lipidology, 2018, 29, 279-284.                                             | 1.2 | 36        |
| 74 | The phenomenon of atherosclerosis reversal and regression: Lessons from animal models.<br>Experimental and Molecular Pathology, 2017, 102, 138-145.      | 0.9 | 29        |
| 75 | How do macrophages sense modified low-density lipoproteins?. International Journal of Cardiology, 2017, 230, 232-240.                                    | 0.8 | 27        |
| 76 | Analysis of Apolipoprotein B Protein of Circulating Multiple-Modified Low-Density Lipoprotein.<br>International Journal of Angiology, 2017, 26, 049-052. | 0.2 | 2         |
| 77 | Macrophages and Their Contribution to the Development of Atherosclerosis. Results and Problems in<br>Cell Differentiation, 2017, 62, 273-298.            | 0.2 | 17        |
| 78 | Circulating desialylated low density lipoprotein. Cor Et Vasa, 2017, 59, e149-e156.                                                                      | 0.1 | 11        |
| 79 | Mechanisms of foam cell formation in atherosclerosis. Journal of Molecular Medicine, 2017, 95, 1153-1165.                                                | 1.7 | 406       |
| 80 | Role of lipids and intraplaque hypoxia in the formation of neovascularization in atherosclerosis.<br>Annals of Medicine, 2017, 49, 661-677.              | 1.5 | 21        |
| 81 | Genes associated with cholesterol accumulation in macrophages (transcriptome analysis).<br>Atherosclerosis, 2017, 263, e117.                             | 0.4 | 2         |
| 82 | CD68/macrosialin: not just a histochemical marker. Laboratory Investigation, 2017, 97, 4-13.                                                             | 1.7 | 447       |
| 83 | Thrombospondins: A Role in Cardiovascular Disease. International Journal of Molecular Sciences, 2017, 18, 1540.                                          | 1.8 | 48        |
| 84 | Cell-Based Models for Development of Antiatherosclerotic Therapies. BioMed Research International, 2017, 2017, 1-8.                                      | 0.9 | 2         |
| 85 | Role of Mitochondrial Genome Mutations in Pathogenesis of Carotid Atherosclerosis. Oxidative<br>Medicine and Cellular Longevity, 2017, 2017, 1-7.        | 1.9 | 31        |
| 86 | Small Dense Low-Density Lipoprotein as Biomarker for Atherosclerotic Diseases. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-10.              | 1.9 | 247       |
| 87 | Calcifying Matrix Vesicles and Atherosclerosis. BioMed Research International, 2017, 2017, 1-7.                                                          | 0.9 | 35        |
| 88 | Use of Primary Macrophages for Searching Novel Immunocorrectors. Current Pharmaceutical Design, 2017, 23, 915-920.                                       | 0.9 | 3         |
| 89 | Monocyte Activation in Immunopathology: Cellular Test for Development of Diagnostics and Therapy.<br>Journal of Immunology Research, 2016, 2016, 1-9.    | 0.9 | 32        |
| 90 | Cellular Model of Atherogenesis Based on Pluripotent Vascular Wall Pericytes. Stem Cells<br>International, 2016, 2016, 1-7.                              | 1.2 | 16        |

| #   | Article                                                                                                                                                                                                                                               | IF        | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| 91  | Macrophages and Their Role in Atherosclerosis: Pathophysiology and Transcriptome Analysis. BioMed<br>Research International, 2016, 2016, 1-13.                                                                                                        | 0.9       | 252       |
| 92  | Antiatherosclerotic Efficacy of Nutraceuticals. , 2016, , 61-73.                                                                                                                                                                                      |           | 0         |
| 93  | The Role of Endoplasmic Reticulum Stress and Unfolded Protein Response in Atherosclerosis.<br>International Journal of Molecular Sciences, 2016, 17, 193.                                                                                             | 1.8       | 72        |
| 94  | Anti-Atherosclerotic Effects of a Phytoestrogen-Rich Herbal Preparation in Postmenopausal Women.<br>International Journal of Molecular Sciences, 2016, 17, 1318.                                                                                      | 1.8       | 39        |
| 95  | Perspectives for Monocyte/Macrophage-Based Diagnostics of Chronic Inflammation. Transfusion<br>Medicine and Hemotherapy, 2016, 43, 66-77.                                                                                                             | 0.7       | 38        |
| 96  | Macrophageâ€mediated cholesterol handling in atherosclerosis. Journal of Cellular and Molecular<br>Medicine, 2016, 20, 17-28.                                                                                                                         | 1.6       | 375       |
| 97  | Immune-inflammatory responses in atherosclerosis: Role of an adaptive immunity mainly driven by T<br>and B cells. Immunobiology, 2016, 221, 1014-1033.                                                                                                | 0.8       | 53        |
| 98  | Organosulfur Compounds as Nutraceuticals. , 2016, , 555-568.                                                                                                                                                                                          |           | 15        |
| 99  | Dataset of mitochondrial genome variants associated with asymptomatic atherosclerosis. Data in<br>Brief, 2016, 7, 1570-1575.                                                                                                                          | 0.5       | 10        |
| 100 | Links between atherosclerotic and periodontal disease. Experimental and Molecular Pathology, 2016, 100, 220-235.                                                                                                                                      | 0.9       | 94        |
| 101 | Analysis of mitochondrial DNA heteroplasmic mutations A1555C, C3256T, T3336C, С5178Ð; G12315A, G13513, G14459A, G14846Еand G15059A in CHD patients with the history of myocardial infarction. Experimental and Molecular Pathology, 2016, 100, 87-91. | А,<br>0.9 | 20        |
| 102 | Cellular models of atherosclerosis and their implication for testing natural substances with anti-atherosclerotic potential. Phytomedicine, 2016, 23, 1190-1197.                                                                                      | 2.3       | 38        |
| 103 | Cellular mechanisms of human atherosclerosis: Role of cell-to-cell communications in subendothelial cell functions. Tissue and Cell, 2016, 48, 25-34.                                                                                                 | 1.0       | 17        |
| 104 | Anti-cytokine therapy for prevention of atherosclerosis. Phytomedicine, 2016, 23, 1198-1210.                                                                                                                                                          | 2.3       | 24        |
| 105 | Anti-atherosclerotic effects of garlic preparation in freeze injury model of atherosclerosis in cholesterol-fed rabbits. Phytomedicine, 2016, 23, 1235-1239.                                                                                          | 2.3       | 23        |
| 106 | Cell Composition of the Subendothelial Aortic Intima and the Role of Alpha-Smooth Muscle Actin<br>Expressing Pericyte-Like Cells and Smooth Muscle Cells in the Development of Atherosclerosis. , 2015, ,                                             |           | 1         |
| 107 | LDL electronegativity index: a potential novel index for predicting cardiovascular disease. Vascular<br>Health and Risk Management, 2015, 11, 525.                                                                                                    | 1.0       | 23        |
| 108 | Macrophages in Immunopathology of Atherosclerosis: A Target for Diagnostics and Therapy. Current<br>Pharmaceutical Design, 2015, 21, 1172-1179.                                                                                                       | 0.9       | 17        |

| #   | Article                                                                                                                                                                                   | IF               | CITATIONS    |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|
| 109 | Endothelial Barrier and Its Abnormalities in Cardiovascular Disease. Frontiers in Physiology, 2015, 6, 365.                                                                               | 1.3              | 184          |
| 110 | Human miR-221/222 in Physiological and Atherosclerotic Vascular Remodeling. BioMed Research<br>International, 2015, 2015, 1-18.                                                           | 0.9              | 139          |
| 111 | Development of Antiatherosclerotic Drugs on the basis of Natural Products Using Cell Model Approach. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-11.                         | 1.9              | 18           |
| 112 | Mosaicism of Mitochondrial Genetic Variation in Atherosclerotic Lesions of the Human Aorta. BioMed<br>Research International, 2015, 2015, 1-9.                                            | 0.9              | 34           |
| 113 | Editorial (Thematic Issue: Mechanisms of Atherogenesis and Development of Anti-Atherosclerotic) Tj ETQq1 1 0.7                                                                            | 784314 rg<br>0.9 | BT_/Overlock |
| 114 | Mitochondrial Aging: Focus on Mitochondrial DNA Damage in Atherosclerosis - A Mini-Review.<br>Gerontology, 2015, 61, 343-349.                                                             | 1.4              | 27           |
| 115 | Heterogeneity of Tregs and the complexity in the IL-12 cytokine family signaling in driving T-cell immune responses in atherosclerotic vessels. Molecular Immunology, 2015, 65, 133-138.  | 1.0              | 8            |
| 116 | Association of mutations in the mitochondrial genome with the subclinical carotid atherosclerosis in women. Experimental and Molecular Pathology, 2015, 99, 25-32.                        | 0.9              | 13           |
| 117 | Vascular stem/progenitor cells: current status of the problem. Cell and Tissue Research, 2015, 362, 1-7.                                                                                  | 1.5              | 29           |
| 118 | Mutations of mitochondrial genome in carotid atherosclerosis. Frontiers in Genetics, 2015, 6, 111.                                                                                        | 1.1              | 10           |
| 119 | Extracellular vesicles and atherosclerotic disease. Cellular and Molecular Life Sciences, 2015, 72, 2697-2708.                                                                            | 2.4              | 69           |
| 120 | Phenomenon of individual difference in human monocyte activation. Experimental and Molecular<br>Pathology, 2015, 99, 151-154.                                                             | 0.9              | 11           |
| 121 | Study of the activated macrophage transcriptome. Experimental and Molecular Pathology, 2015, 99, 575-580.                                                                                 | 0.9              | 23           |
| 122 | Quantitative analysis of the expression of caspase 3 and caspase 9 in different types of atherosclerotic lesions in the human aorta. Experimental and Molecular Pathology, 2015, 99, 1-6. | 0.9              | 13           |
| 123 | Association of mitochondrial mutations with the age of patients having atherosclerotic lesions.<br>Experimental and Molecular Pathology, 2015, 99, 717-719.                               | 0.9              | 11           |
| 124 | Neutrophil's weapons in atherosclerosis. Experimental and Molecular Pathology, 2015, 99, 663-671.                                                                                         | 0.9              | 44           |
| 125 | Mutations of Mitochondrial DNA in Atherosclerosis and Atherosclerosis-Related Diseases. Current<br>Pharmaceutical Design, 2015, 21, 1158-1163.                                            | 0.9              | 21           |
| 126 | Antiatherosclerotic and Cardioprotective Effects of Time-Released Garlic Powder Pills. Current<br>Pharmaceutical Design, 2015, 22, 196-213.                                               | 0.9              | 17           |

| #   | Article                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Intimal pericytes as the second line of immune defence in atherosclerosis. World Journal of Cardiology, 2015, 7, 583.                                                                                                                                                    | 0.5 | 23        |
| 128 | Approach to Reduction of Blood Atherogenicity. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-8.                                                                                                                                                               | 1.9 | 11        |
| 129 | Modified Low Density Lipoprotein and Lipoprotein-Containing Circulating Immune Complexes as<br>Diagnostic and Prognostic Biomarkers of Atherosclerosis and Type 1 Diabetes Macrovascular Disease.<br>International Journal of Molecular Sciences, 2014, 15, 12807-12841. | 1.8 | 74        |
| 130 | Dendritic cells in atherosclerotic inflammation: the complexity of functions and the peculiarities of pathophysiological effects. Frontiers in Physiology, 2014, 5, 196.                                                                                                 | 1.3 | 28        |
| 131 | Low Density Lipoprotein-Containing Circulating Immune Complexes: Role in Atherosclerosis and Diagnostic Value. BioMed Research International, 2014, 2014, 1-7.                                                                                                           | 0.9 | 38        |
| 132 | Quantitative Assessment of Heteroplasmy of Mitochondrial Genome: Perspectives in Diagnostics and Methodological Pitfalls. BioMed Research International, 2014, 2014, 1-9.                                                                                                | 0.9 | 40        |
| 133 | Mitochondrial Aging and Age-Related Dysfunction of Mitochondria. BioMed Research International, 2014, 2014, 1-7.                                                                                                                                                         | 0.9 | 312       |
| 134 | The complexity of cell composition of the intima of large arteries: focus on pericyte-like cells.<br>Cardiovascular Research, 2014, 103, 438-451.                                                                                                                        | 1.8 | 47        |
| 135 | Diagnostic and Prognostic Value of Low Density Lipoprotein-Containing Circulating Immune<br>Complexes in Atherosclerosis. Journal of Clinical Immunology, 2013, 33, 489-495.                                                                                             | 2.0 | 21        |
| 136 | Increased Shedding of Microvesicles from Intimal Smooth Muscle Cells in Athero-Prone Areas of the<br>Human Aorta: Implications for Understanding of the Predisease Stage. Pathobiology, 2013, 80, 24-31.                                                                 | 1.9 | 27        |
| 137 | Regulatory T cells in atherosclerosis and strategies to induce the endogenous atheroprotective immune response. Immunology Letters, 2013, 151, 10-22.                                                                                                                    | 1.1 | 52        |
| 138 | Low density lipoprotein-containing circulating immune complexes have better prognostic value in carotid intima-media thickness progression than other lipid parameters. International Journal of Cardiology, 2013, 166, 747-748.                                         | 0.8 | 8         |
| 139 | Changes of mitochondria in atherosclerosis: Possible determinant inÂthe pathogenesis of the disease.<br>Atherosclerosis, 2013, 227, 283-288.                                                                                                                             | 0.4 | 52        |
| 140 | Vascular Extracellular Matrix in Atherosclerosis. Cardiology in Review, 2013, 21, 270-288.                                                                                                                                                                               | 0.6 | 96        |
| 141 | Changes of lysosomes in the earliest stages of the development of atherosclerosis. Journal of<br>Cellular and Molecular Medicine, 2013, 17, 626-635.                                                                                                                     | 1.6 | 16        |
| 142 | Intracellular Cholesterol Retention—New Target for Direct Anti-Atherosclerotic Therapy. Open<br>Journal of Endocrine and Metabolic Diseases, 2013, 03, 9-17.                                                                                                             | 0.2 | 0         |
| 143 | Anti-atherosclerotic Drugs from Natural Products. Natural Products Chemistry & Research, 2013, 1, .                                                                                                                                                                      | 0.2 | 2         |
| 144 | Mitochondrial Mutations in Atherosclerosis: New Solutions in Research and Possible Clinical Applications. Current Pharmaceutical Design, 2013, 19, 5942-5953.                                                                                                            | 0.9 | 29        |

| #   | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Association of Mitochondrial Genetic Variation with Carotid Atherosclerosis. PLoS ONE, 2013, 8, e68070.                                                                                                                    | 1.1 | 38        |
| 146 | Anti-Atherosclerotic Therapy Based on Botanicals. Recent Patents on Cardiovascular Drug Discovery, 2013, 8, 56-66.                                                                                                         | 1.5 | 44        |
| 147 | Novel Monocyte Biomarkers of Atherogenic Conditions. Current Pharmaceutical Design, 2013, 19, 5859-5864.                                                                                                                   | 0.9 | 17        |
| 148 | Direct Anti-Atherosclerotic Therapy; Development of Natural Anti-Atherosclerotic Drugs Preventing<br>Cellular Cholesterol Retention. Current Pharmaceutical Design, 2013, 19, 5909-5928.                                   | 0.9 | 37        |
| 149 | Blood Atherogenicity as a Target for Anti-atherosclerotic Therapy. Current Pharmaceutical Design, 2013, 19, 5954-5962.                                                                                                     | 0.9 | 22        |
| 150 | Association of the level of heteroplasmy of the 15059G>A mutation in the MT-CYB mitochondrial gene with essential hypertension. World Journal of Cardiology, 2013, 5, 132.                                                 | 0.5 | 10        |
| 151 | Mitochondrial Mutations are Associated with Atherosclerotic Lesions in the Human Aorta. Clinical and Developmental Immunology, 2012, 2012, 1-5.                                                                            | 3.3 | 43        |
| 152 | Strategies to deliver microRNAs as potential therapeutics in the treatment of cardiovascular pathology. Drug Delivery, 2012, 19, 392-405.                                                                                  | 2.5 | 37        |
| 153 | Widespread distribution of HLA-DR-expressing cells in macroscopically undiseased intima of the human aorta: A possible role in surveillance and maintenance of vascular homeostasis.<br>Immunobiology, 2012, 217, 558-568. | 0.8 | 19        |
| 154 | Monocytes as a diagnostic marker of cardiovascular diseases. Immunobiology, 2012, 217, 476-482.                                                                                                                            | 0.8 | 103       |
| 155 | Mitochondrial dysfunction and mitochondrial DNA mutations in atherosclerotic complications in diabetes. World Journal of Cardiology, 2012, 4, 148.                                                                         | 0.5 | 20        |
| 156 | Pluronic Block Copolymers Inhibit Low Density Lipoprotein Selfâ€Association. Lipids, 2012, 47, 995-1000.                                                                                                                   | 0.7 | 8         |
| 157 | Mutation C3256T of Mitochondrial Genome in White Blood Cells: Novel Genetic Marker of Atherosclerosis and Coronary Heart Disease. PLoS ONE, 2012, 7, e46573.                                                               | 1.1 | 27        |
| 158 | Musashi-1 expression in atherosclerotic arteries and its relevance to the origin of arterial smooth muscle cells: Histopathological findings and speculations. Atherosclerosis, 2011, 215, 355-365.                        | 0.4 | 9         |
| 159 | Correlation between lipid deposition, immune-inflammatory cell content and MHC class II expression in diffuse intimal thickening of the human aorta. Atherosclerosis, 2011, 219, 171-183.                                  | 0.4 | 20        |
| 160 | The Interaction of Plasma Sialylated and Desialylated Lipoproteins with Collagen from the Intima and<br>Media of Uninvolved and Atherosclerotic Human Aorta. Journal of Lipids, 2011, 2011, 1-8.                           | 1.9 | 8         |
| 161 | The effects of time-released garlic powder tablets on multifunctional cardiovascular risk in patients with coronary artery disease. Lipids in Health and Disease, 2010, 9, 119.                                            | 1.2 | 81        |
| 162 | Time-released garlic powder tablets lower systolic and diastolic blood pressure in men with mild and moderate arterial hypertension. Hypertension Research, 2009, 32, 433-437.                                             | 1.5 | 56        |

| #   | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Metabolic effects of time-released garlic powder tablets in type 2 diabetes mellitus: the results of double-blinded placebo-controlled study. Acta Diabetologica, 2008, 45, 1-6.                                   | 1.2 | 90        |
| 164 | Lipid-Lowering Effects of Time-Released Garlic Powder Tablets in Double-Blinded Placebo-Controlled Randomized Study. Journal of Atherosclerosis and Thrombosis, 2008, 15, 334-338.                                 | 0.9 | 68        |
| 165 | Evaluation of Cell Proliferation in Human Atherosclerotic Lesions. , 2001, 52, 213-218.                                                                                                                            |     | 2         |
| 166 | In vivo oxidized low density lipoprotein: degree of lipoprotein oxidation does not correlate with its atherogenic properties. Molecular and Cellular Biochemistry, 1998, 183, 141-146.                             | 1.4 | 9         |
| 167 | Cell proliferation in normal and atherosclerotic human aorta: proliferative splash in lipid-rich<br>lesions. Atherosclerosis, 1998, 139, 41-48.                                                                    | 0.4 | 67        |
| 168 | Antioxidant content in low density lipoprotein and lipoprotein oxidation <i>in vivo</i> and <i>in vito</i> . Free Radical Research, 1998, 29, 165-173.                                                             | 1.5 | 24        |
| 169 | The Effects of Antihypertensive Agents on Atherosclerosis-Related Parameters of Human Aorta Intimal<br>Cells. Cardiology, 1998, 89, 111-118.                                                                       | 0.6 | 12        |
| 170 | Optimization of the assay for sialic acid determination in low density lipoprotein. Journal of Lipid<br>Research, 1998, 39, 2293-2299.                                                                             | 2.0 | 15        |
| 171 | Subendothelial smooth muscle cells of human aorta express macrophage antigen in situ and in vitro.<br>Atherosclerosis, 1997, 135, 19-27.                                                                           | 0.4 | 104       |
| 172 | Antiatherosclerotic and antiatherogenic effects of a calcium antagonist plus statin combination: amlodipine and lovastatin. International Journal of Cardiology, 1997, 62, S67-S77.                                | 0.8 | 16        |
| 173 | Effects of garlic on atherosclerosis. Nutrition, 1997, 13, 656-663.                                                                                                                                                | 1.1 | 76        |
| 174 | Lack of correlation between degree of human plasma low density lipoprotein oxidation and its atherogenic potential. BioFactors, 1997, 6, 139-143.                                                                  | 2.6 | 4         |
| 175 | Metabolism of Native and Naturally Occurring Multiple Modified Low Density Lipoprotein in Smooth<br>Muscle Cells of Human Aortic Intima. Experimental and Molecular Pathology, 1997, 64, 127-145.                  | 0.9 | 57        |
| 176 | In vitro effect of garlic powder extract on lipid content in normal and atherosclerotic human aortic cells. Lipids, 1997, 32, 1055-1060.                                                                           | 0.7 | 44        |
| 177 | Similarity Between Naturally Occurring Modified Desialylated, Electronegative and Aortic Low Density Lipoprotein. Free Radical Research, 1996, 25, 313-319.                                                        | 1.5 | 26        |
| 178 | Diagnostic value of immune cholesterol as a marker for atherosclerosis. European Journal of<br>Cardiovascular Prevention and Rehabilitation, 1995, 2, 459???466.                                                   | 1.5 | 7         |
| 179 | Naturally Occurring Modified Low Density Lipoproteins Are Similar if Not Identical: More<br>Electronegative and Desialylated Lipoprotein Subfractions. Experimental and Molecular Pathology,<br>1995, 62, 166-172. | 0.9 | 45        |
| 180 | Direct Anti-atherosclerosis-related Effects of Garlic. Annals of Medicine, 1995, 27, 63-65.                                                                                                                        | 1.5 | 57        |

| #   | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Characteristics of low-density lipoprotein subfractions from patients with coronary artery disease.<br>Coronary Artery Disease, 1993, 4, 379-386.                                                                                                                | 0.3 | 50        |
| 182 | Beta-blockers: propranolol, metoprolol, atenolol, pindolol, alprenolol and timolol, manifest<br>atherogenicity on in vitro, ex vivo and in vivo models. Elimination of propranolol atherogenic effects<br>by papaverine. Atherosclerosis, 1992, 95, 77-85.       | 0.4 | 10        |
| 183 | Atherogenicity of Anti-LDL Autoantibodies. , 1992, , 91-98.                                                                                                                                                                                                      |     | Ο         |
| 184 | Desialylated low density lipoprotein - naturally occurring modified lipoprotein with atherogenic potency. Atherosclerosis, 1991, 86, 153-161.                                                                                                                    | 0.4 | 113       |
| 185 | Lipoprotein immune complexes and their role in atherogenesis. Current Opinion in Lipidology, 1991, 2, 329-334.                                                                                                                                                   | 1.2 | 10        |
| 186 | Lipids in cells of atherosclerotic and uninvolved human aorta. Experimental and Molecular<br>Pathology, 1991, 54, 22-30.                                                                                                                                         | 0.9 | 20        |
| 187 | Atherogenic Factors of Blood: Desialylated LDL and Anti-LDL Autoantibodies. , 1991, , 73-85.                                                                                                                                                                     |     | 1         |
| 188 | In vitro models of antiatherosclerotic effects of cardiovascular drugs. American Journal of Cardiology, 1990, 66, 23-28.                                                                                                                                         | 0.7 | 121       |
| 189 | Correlation between cholesterol content in circulating immune complexes and atherogenic properties of CHD patients' serum manifested in cell culture. Atherosclerosis, 1990, 81, 183-189.                                                                        | 0.4 | 42        |
| 190 | Isolation of atherogenic modified (desialylated) low density lipoprotein from blood of<br>atherosclerotic patients: Separation from native lipoprotein by affinity chromatography. Biochemical<br>and Biophysical Research Communications, 1990, 167, 1122-1127. | 1.0 | 77        |
| 191 | Antibody-Like Immunoglobulins G Against Low Density Lipoprotein that Stimulate LIPID Accumulation<br>in Cultured Cells. Advances in Experimental Medicine and Biology, 1990, 285, 399-405.                                                                       | 0.8 | 6         |
| 192 | Cholesterol Level in Circulating Immune Complexes as a Marker of Coronary Atherosclerosis.<br>Advances in Experimental Medicine and Biology, 1990, 285, 393-397.                                                                                                 | 0.8 | 4         |
| 193 | Low-density lipoproteins isolated from the blood of patients with coronary heart disease induce the accumulation of lipids in human aortic cells. Experimental and Molecular Pathology, 1989, 50, 337-347.                                                       | 0.9 | 67        |
| 194 | Neutral glycolipids of atherosclerotic plaques and unaffected human aorta tissue. FEBS Journal, 1989, 180, 167-171.                                                                                                                                              | 0.2 | 9         |
| 195 | Antiatherogenic and antiatherosclerotic effects of mushroom extracts revealed in human aortic intima cell culture. Drug Development Research, 1989, 17, 109-117.                                                                                                 | 1.4 | 25        |
| 196 | Insolubilization of low density lipoprotein induces cholesterol accumulation in cultured subendothelial cells of human aorta. Atherosclerosis, 1989, 79, 59-70.                                                                                                  | 0.4 | 29        |
| 197 | Ganglioside content and composition of cells from normal and atherosclerotic human aorta.<br>Atherosclerosis, 1989, 78, 39-45.                                                                                                                                   | 0.4 | 25        |
| 198 | Lipoprotein aggregation as an essential condition of intracellular lipid accumulation caused by<br>modified low density lipoproteins. Biochemical and Biophysical Research Communications, 1989, 163,<br>489-494.                                                | 1.0 | 120       |

| #   | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Atherogenic effects of beta blockers on cells cultured from normal and atherosclerotic aorta.<br>American Journal of Cardiology, 1988, 61, 1116-1117.                                                                                                             | 0.7 | 17        |
| 200 | Cardiovascular Drugs and Atherosclerosis. Journal of Cardiovascular Pharmacology, 1988, 12, S66-S68.                                                                                                                                                              | 0.8 | 27        |
| 201 | Association of low-density lipoprotein with particulate connective tissue matrix components<br>enhances cholesterol accumulation in cultured subendothelial cells of human aorta. Biochimica Et<br>Biophysica Acta - Molecular Cell Research, 1987, 928, 251-258. | 1.9 | 33        |
| 202 | Evidence of antiatherosclerotic action of verapamil from direct effects on arterial cells. American<br>Journal of Cardiology, 1987, 59, 495-496.                                                                                                                  | 0.7 | 45        |
| 203 | The gangliosides of adult human aorta: intima, media and plaque. FEBS Journal, 1987, 167, 349-352.                                                                                                                                                                | 0.2 | 34        |
| 204 | Lowâ€Density Lipoprotein Apheresis and Regression of Atherosclerotic Plaque In Vitro. Artificial<br>Organs, 1986, 10, 466-469.                                                                                                                                    | 1.0 | 4         |
| 205 | Effect of cyclic AMP on lipid accumulation and metabolism in human atherosclerotic aortic cells.<br>Atherosclerosis, 1986, 62, 55-64.                                                                                                                             | 0.4 | 14        |
| 206 | ?Regression? of atherosclerosis in cell culture: Effects of stable prostacyclin analogues. Drug<br>Development Research, 1986, 9, 189-201.                                                                                                                        | 1.4 | 21        |
| 207 | Adult human aortic cells in primary culture: heterogeneity in shape. Heart and Vessels, 1986, 2, 193-201.                                                                                                                                                         | 0.5 | 24        |
| 208 | Intracellular Cholesterol Lowering as Novel Target for Antiâ€Atherosclerotic Therapy. , 0, , .                                                                                                                                                                    |     | 1         |
| 209 | Circulating Atherogenic Multiple-Modified Low-Density Lipoprotein: Pathophysiology and Clinical Applications. , 0, , .                                                                                                                                            |     | 0         |
| 210 | Potential use of buccal epithelium for genetic diagnosis of atherosclerosis using mtDNA mutations.<br>Vessel Plus, 0, , .                                                                                                                                         | 0.4 | 14        |
| 211 | New markers of atherosclerosis: a threshold level of heteroplasmy in mtDNA mutations. Vessel Plus,<br>0, , .                                                                                                                                                      | 0.4 | 8         |