Donny M. Camera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5503960/publications.pdf

Version: 2024-02-01

63 papers

3,273 citations

30 h-index 55 g-index

65 all docs 65 does citations

65 times ranked 4776 citing authors

#	Article	IF	CITATIONS
1	Evaluating the Effects of Increased Protein Intake on Muscle Strength, Hypertrophy and Power Adaptations with Concurrent Training: A Narrative Review. Sports Medicine, 2022, 52, 441-461.	6.5	7
2	Perspective: Time-Restricted Eatingâ€"Integrating the What with the When. Advances in Nutrition, 2022, 13, 699-711.	6.4	20
3	Muscle Protein Synthesis Responses Following Aerobic-Based Exercise or High-Intensity Interval Training with or Without Protein Ingestion: A Systematic Review. Sports Medicine, 2022, 52, 2713-2732.	6. 5	8
4	Lower nocturnal blood glucose response to a potato-based mixed evening meal compared to rice in individuals with type 2 diabetes. Clinical Nutrition, 2021, 40, 2200-2209.	5 . 0	4
5	Can High-Intensity Interval Training Promote Skeletal Muscle Anabolism?. Sports Medicine, 2021, 51, 405-421.	6.5	47
6	Skeletal Muscle Adaptive Responses to Different Types of Short-Term Exercise Training and Detraining in Middle-Age Men. Medicine and Science in Sports and Exercise, 2021, 53, 2023-2036.	0.4	8
7	The effect of morning vs evening exercise training on glycaemic control and serum metabolites in overweight/obese men: a randomised trial. Diabetologia, 2021, 64, 2061-2076.	6.3	44
8	Myofibre Hypertrophy in the Absence of Changes to Satellite Cell Content Following Concurrent Exercise Training in Young Healthy Men. Frontiers in Physiology, 2021, 12, 625044.	2.8	3
9	Concordance between Different Criteria for Self-Reported Physical Activity Levels and Risk Factors in People with High Blood Pressure in a Rural District in Bangladesh. International Journal of Environmental Research and Public Health, 2021, 18, 10487.	2.6	3
10	A Time to Eat and a Time to Exercise. Exercise and Sport Sciences Reviews, 2020, 48, 4-10.	3.0	41
11	Time-Restricted Eating as a Nutrition Strategy for Individuals with Type 2 Diabetes: A Feasibility Study. Nutrients, 2020, 12, 3228.	4.1	71
12	Circulating and Adipose Tissue miRNAs in Women With Polycystic Ovary Syndrome and Responses to High-Intensity Interval Training. Frontiers in Physiology, 2020, 11, 904.	2.8	18
13	Time-restricted feeding alters lipid and amino acid metabolite rhythmicity without perturbing clock gene expression. Nature Communications, 2020, 11, 4643.	12.8	69
14	A Delayed Morning and Earlier Evening Time-Restricted Feeding Protocol for Improving Glycemic Control and Dietary Adherence in Men with Overweight/Obesity: A Randomized Controlled Trial. Nutrients, 2020, 12, 505.	4.1	95
15	Divergent Regulation of Myotube Formation and Gene Expression by E2 and EPA during In-Vitro Differentiation of C2C12 Myoblasts. International Journal of Molecular Sciences, 2020, 21, 745.	4.1	9
16	Differences in Lower Limb Strength and Structure After 12 Weeks of Resistance, Endurance, and Concurrent Training. International Journal of Sports Physiology and Performance, 2020, 15, 1223-1230.	2.3	7
17	A single bout of strenuous exercise overcomes lipidâ€induced anabolic resistance to protein ingestion in overweight, middleâ€aged men. FASEB Journal, 2019, 33, 7009-7017.	0.5	11
18	Augmented Anabolic Responses after 8-wk Cycling with Blood Flow Restriction. Medicine and Science in Sports and Exercise, 2019, 51, 84-93.	0.4	35

#	Article	IF	CITATIONS
19	Muscle Fiber Hypertrophy and Myonuclei Addition: A Systematic Review and Meta-analysis. Medicine and Science in Sports and Exercise, 2018, 50, 1385-1393.	0.4	44
20	Where do satellite cells orbit? An endomysium space odyssey. Journal of Physiology, 2018, 596, 1791-1792.	2.9	3
21	Protein Availability and Satellite Cell Dynamics in Skeletal Muscle. Sports Medicine, 2018, 48, 1329-1343.	6.5	25
22	The guardian of the genome p53 regulates exerciseâ€induced mitochondrial plasticity beyond organelle biogenesis. Acta Physiologica, 2018, 222, e13004.	3.8	12
23	Effects of Creatine and Carbohydrate Loading on Cycling Time Trial Performance. Medicine and Science in Sports and Exercise, 2018, 50, 141-150.	0.4	15
24	Adaptations to Concurrent Training in Combination with High Protein Availability: A Comparative Trial in Healthy, Recreationally Active Men. Sports Medicine, 2018, 48, 2869-2883.	6.5	21
25	Anabolic Heterogeneity Following Resistance Training: A Role for Circadian Rhythm?. Frontiers in Physiology, 2018, 9, 569.	2.8	10
26	Potential Roles of n-3 PUFAs during Skeletal Muscle Growth and Regeneration. Nutrients, 2018, 10, 309.	4.1	74
27	Effects of Providing High-Fat versus High-Carbohydrate Meals on Daily and Postprandial Physical Activity and Glucose Patterns: a Randomised Controlled Trial. Nutrients, 2018, 10, 557.	4.1	17
28	Impact of First Meal Size during Prolonged Sitting on Postprandial Glycaemia in Individuals with Prediabetes: A Randomised, Crossover Study. Nutrients, 2018, 10, 733.	4.1	4
29	Human metabolomics reveal daily variations under nutritional challenges specific to serum and skeletal muscle. Molecular Metabolism, 2018, 16, 1-11.	6.5	55
30	Fenugreek increases insulin-stimulated creatine content in L6C11 muscle myotubes. European Journal of Nutrition, 2017, 56, 973-979.	3.9	9
31	Acute low-intensity cycling with blood-flow restriction has no effect on metabolic signaling in human skeletal muscle compared to traditional exercise. European Journal of Applied Physiology, 2017, 117, 345-358.	2.5	10
32	Expression of microRNAs and target proteins in skeletal muscle of rats selectively bred for high and low running capacity. American Journal of Physiology - Endocrinology and Metabolism, 2017, 313, E335-E343.	3.5	14
33	Dynamic proteome profiling of individual proteins in human skeletal muscle after a highâ€fat diet and resistance exercise. FASEB Journal, 2017, 31, 5478-5494.	0.5	47
34	Transcriptomic and epigenetic responses to short-term nutrient-exercise stress in humans. Scientific Reports, 2017, 7, 15134.	3.3	46
35	Selective Modulation of MicroRNA Expression with Protein Ingestion Following Concurrent Resistance and Endurance Exercise in Human Skeletal Muscle. Frontiers in Physiology, 2016, 7, 87.	2.8	41
36	Acute Endurance Exercise Induces Nuclear p53 Abundance in Human Skeletal Muscle. Frontiers in Physiology, 2016, 7, 144.	2.8	36

#	Article	IF	CITATIONS
37	Attenuated PGC-1α Isoforms following Endurance Exercise with Blood Flow Restriction. Medicine and Science in Sports and Exercise, 2016, 48, 1699-1707.	0.4	27
38	Commentaries on Viewpoint: The rigorous study of exercise adaptations: Why mRNA might not be enough. Journal of Applied Physiology, 2016, 121, 597-600.	2.5	6
39	Protein coingestion with alcohol following strenuous exercise attenuates alcohol-induced intramyocellular apoptosis and inhibition of autophagy. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E836-E849.	3.5	17
40	Effects of skeletal muscle energy availability on protein turnover responses to exercise. Journal of Experimental Biology, 2016, 219, 214-225.	1.7	37
41	A randomized trial of highâ€dairyâ€protein, variableâ€carbohydrate diets and exercise on body composition in adults with obesity. Obesity, 2016, 24, 1035-1045.	3.0	21
42	Exercise-induced skeletal muscle signaling pathways and human athletic performance. Free Radical Biology and Medicine, 2016, 98, 131-143.	2.9	89
43	Carbohydrate dependence during prolonged simulated cycling time trials. European Journal of Applied Physiology, 2016, 116, 781-790.	2.5	19
44	Circulating MicroRNA Responses between  High' and  Low' Responders to a 16-Wk Diet and Exercise Weight Loss Intervention. PLoS ONE, 2016, 11, e0152545.	2.5	54
45	Modulation of autophagy signaling with resistance exercise and protein ingestion following short-term energy deficit. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R603-R612.	1.8	28
46	Resistance exercise with low glycogen increases p53 phosphorylation and PGC-1α mRNA in skeletal muscle. European Journal of Applied Physiology, 2015, 115, 1185-1194.	2.5	31
47	Commentaries on Viewpoint: What is the relationship between acute measure of muscle protein synthesis and changes in muscle mass?. Journal of Applied Physiology, 2015, 118, 498-503.	2.5	14
48	More than mitochondrial biogenesis: alternative roles of PGCâ€1α in exercise adaptation. Journal of Physiology, 2015, 593, 2115-2117.	2.9	9
49	Protein Ingestion Increases Myofibrillar Protein Synthesis after Concurrent Exercise. Medicine and Science in Sports and Exercise, 2015, 47, 82-91.	0.4	49
50	Effects of sleeping with reduced carbohydrate availability on acute training responses. Journal of Applied Physiology, 2015, 119, 643-655.	2.5	82
51	Alcohol Ingestion Impairs Maximal Post-Exercise Rates of Myofibrillar Protein Synthesis following a Single Bout of Concurrent Training. PLoS ONE, 2014, 9, e88384.	2.5	73
52	Reduced resting skeletal muscle protein synthesis is rescued by resistance exercise and protein ingestion following short-term energy deficit. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E989-E997.	3.5	150
53	Beyond muscle hypertrophy: why dietary protein is important for endurance athletes. Applied Physiology, Nutrition and Metabolism, 2014, 39, 987-997.	1.9	93
54	Meteorin-like Is a Hormone that Regulates Immune-Adipose Interactions to Increase Beige Fat Thermogenesis. Cell, 2014, 157, 1279-1291.	28.9	699

#	Article	IF	CITATIONS
55	â€~Sarcobesity': A metabolic conundrum. Maturitas, 2013, 74, 109-113.	2.4	78
56	Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. Journal of Physiology, 2013, 591, 2319-2331.	2.9	341
57	ERK1/2 in the brain mediates the effects of central resistin on reducing thermogenesis in brown adipose tissue. International Journal of Physiology, Pathophysiology and Pharmacology, 2013, 5, 184-9.	0.8	10
58	Skeletal muscle respiratory capacity is enhanced in rats consuming an obesogenic Western diet. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E1541-E1549.	3.5	27
59	Low muscle glycogen concentration does not suppress the anabolic response to resistance exercise. Journal of Applied Physiology, 2012, 113, 206-214.	2.5	57
60	Sex-based comparisons of myofibrillar protein synthesis after resistance exercise in the fed state. Journal of Applied Physiology, 2012, 112, 1805-1813.	2. 5	99
61	No role for early IGFâ€1 signalling in stimulating acute †muscle building' responses. Journal of Physiology, 2011, 589, 2667-2668.	2.9	3
62	Short-term endurance training does not alter the oxidative capacity of human subcutaneous adipose tissue. European Journal of Applied Physiology, 2010, 109, 307-316.	2.5	49
63	Early Time Course of Akt Phosphorylation after Endurance and Resistance Exercise. Medicine and Science in Sports and Exercise, 2010, 42, 1843-1852.	0.4	125