Brent S Murray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5503103/publications.pdf

Version: 2024-02-01

96 papers 6,375 citations

57758 44 h-index 78 g-index

97 all docs

97 docs citations 97 times ranked

4447 citing authors

#	Article	IF	CITATIONS
1	Relationship between size and cellulose content of cellulose microgels (CMGs) and their water-in-oil emulsifying capacity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 128926.	4.7	6
2	Differential effects of oilseed protein hydrolysates in attenuating inflammation in murine macrophages. Food Bioscience, 2022, 49, 101860.	4.4	3
3	A natural, cellulose-based microgel for water-in-oil emulsions. Food Hydrocolloids, 2021, 113, 106408.	10.7	21
4	Rheology and tribology of starch + <i>κ</i> ê€carrageenan mixtures. Journal of Texture Studies, 2021, 52, 16-24.	2.5	14
5	Advances in the use of microgels as emulsion stabilisers and as a strategy for cellulose functionalisation. Cellulose, 2021, 28, 647-670.	4.9	22
6	Comparison of alcalase- and pepsin-treated oilseed protein hydrolysates $\hat{a} \in \text{``Experimental validation of}$ predicted antioxidant, antihypertensive and antidiabetic properties. Current Research in Food Science, 2021, 4, 141-149.	5.8	34
7	Rheological and NMR Studies of Cellulose Dissolution in the Ionic Liquid BmimAc. Journal of Physical Chemistry B, 2021, 125, 8205-8218.	2.6	10
8	The perfect hydrocolloid stabilizer: Imagination versus reality. Food Hydrocolloids, 2021, 117, 106696.	10.7	21
9	Enzyme cross-linked pectin microgel particles for use in foods. Food Hydrocolloids, 2021, 121, 107045.	10.7	7
10	Synergistic Interactions of Plant Protein Microgels and Cellulose Nanocrystals at the Interface and Their Inhibition of the Gastric Digestion of Pickering Emulsions. Langmuir, 2021, 37, 827-840.	3.5	22
11	Egg white protein microgels as aqueous Pickering foam stabilizers: Bubble stability and interfacial properties. Food Hydrocolloids, 2020, 98, 105292.	10.7	61
12	Combination of egg white protein and microgels to stabilize foams: Impact of processing treatments. Journal of Food Engineering, 2020, 275, 109860.	5.2	18
13	Recent developments in food foams. Current Opinion in Colloid and Interface Science, 2020, 50, 101394.	7.4	91
14	Water-in-oil emulsions stabilized by surfactants, biopolymers and/or particles: a review. Trends in Food Science and Technology, 2020, 104, 49-59.	15.1	138
15	Foam-Mat Freeze-Drying of Blueberry Juice by Using Trehalose-Î ² -Lactoglobulin and Trehalose-Bovine Serum Albumin as Matrices. Food and Bioprocess Technology, 2020, 13, 988-997.	4.7	12
16	Stability of water-in-oil emulsions co-stabilized by polyphenol crystal-protein complexes as a function of shear rate and temperature. Journal of Food Engineering, 2020, 281, 109991.	5.2	25
17	Microgels at fluid-fluid interfaces for food and drinks. Advances in Colloid and Interface Science, 2019, 271, 101990.	14.7	42
18	On the Origin of Seemingly Nonsurface-Active Particles Partitioning between Phase-Separated Solutions of Incompatible Nonadsorbing Polymers and Their Adsorption at the Phase Boundary. Langmuir, 2019, 35, 9493-9503.	3.5	7

#	Article	lF	CITATIONS
19	Water-in-Oil Pickering Emulsions Stabilized by Synergistic Particle–Particle Interactions. Langmuir, 2019, 35, 13078-13089.	3.5	57
20	Pickering emulsions for food and drinks. Current Opinion in Food Science, 2019, 27, 57-63.	8.0	123
21	Water-in-oil Pickering emulsions stabilized by an interfacial complex of water-insoluble polyphenol crystals and protein. Journal of Colloid and Interface Science, 2019, 548, 88-99.	9.4	99
22	Overcoming in vitro gastric destabilisation of emulsion droplets using emulsion microgel particles for targeted intestinal release of fatty acids. Food Hydrocolloids, 2019, 89, 523-533.	10.7	27
23	Encapsulation of water-insoluble polyphenols and \hat{l}^2 -carotene in Ca-alginate microgel particles produced by the Leeds Jet Homogenizer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 561, 147-154.	4.7	11
24	An investigation in to batch cleaning using wash racks. Food and Bioproducts Processing, 2019, 113, 118-128.	3.6	6
25	Identification of angiotensin converting enzyme and dipeptidyl peptidase-IV inhibitory peptides derived from oilseed proteins using two integrated bioinformatic approaches. Food Research International, 2019, 115, 283-291.	6.2	53
26	Generation of ultra-stable Pickering microbubbles via poly alkylcyanoacrylates. Journal of Colloid and Interface Science, 2019, 536, 618-627.	9.4	11
27	Foaming and air-water interfacial characteristics of solutions containing both gluten hydrolysate and egg white protein. Food Hydrocolloids, 2018, 77, 176-186.	10.7	34
28	Comparison of blueberry powder produced via foamâ€mat freezeâ€drying versus sprayâ€drying: evaluation of foam and powder properties. Journal of the Science of Food and Agriculture, 2018, 98, 2002-2010.	3.5	63
29	Emulsion Microgel Particles as High-Performance Bio-Lubricants. ACS Applied Materials & Samp; Interfaces, 2018, 10, 26893-26905.	8.0	67
30	Water-In-Oil Pickering Emulsions Stabilized by Water-Insoluble Polyphenol Crystals. Langmuir, 2018, 34, 10001-10011.	3 . 5	100
31	Design of novel emulsion microgel particles of tuneable size. Food Hydrocolloids, 2017, 71, 47-59.	10.7	45
32	Novel starch based emulsion gels and emulsion microgel particles: Design, structure and rheology. Carbohydrate Polymers, 2017, 178, 86-94.	10.2	92
33	Aqueous Lubrication, Structure and Rheological Properties of Whey Protein Microgel Particles. Langmuir, 2017, 33, 14699-14708.	3.5	93
34	Modulating in vitro gastric digestion of emulsions using composite whey protein-cellulose nanocrystal interfaces. Colloids and Surfaces B: Biointerfaces, 2017, 158, 137-146.	5.0	103
35	Particle stabilized water in water emulsions. Food Hydrocolloids, 2017, 68, 157-163.	10.7	107
36	Preparation of alginate microgels in a simple one step process via the Leeds Jet Homogenizer. Food Hydrocolloids, 2016, 61, 77-84.	10.7	23

#	Article	IF	CITATIONS
37	Soybean protein isolate gel particles as foaming and emulsifying agents. Food Hydrocolloids, 2016, 60, 206-215.	10.7	80
38	Emulsion microgel particles: Novel encapsulation strategy for lipophilic molecules. Trends in Food Science and Technology, 2016, 55, 98-108.	15.1	154
39	Whey protein microgel particles as stabilizers of waxy corn starchÂ+Âlocust bean gum water-in-water emulsions. Food Hydrocolloids, 2016, 56, 161-169.	10.7	64
40	Effect of egg white protein-pectin electrostatic interactions in a high sugar content system on foaming and foam rheological properties. Food Hydrocolloids, 2016, 58, 1-10.	10.7	60
41	In vitro digestion of Pickering emulsions stabilized by soft whey protein microgel particles: influence of thermal treatment. Soft Matter, 2016, 12, 3558-3569.	2.7	198
42	Evolution of bubble size distribution in particle stabilised bubble dispersions: Competition between particle adsorption and dissolution kinetics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 475, 27-36.	4.7	10
43	The influence of oil droplets on the phase separation of protein–polysaccharide mixtures. Food Hydrocolloids, 2014, 34, 128-137.	10.7	26
44	Interfacial rheology and stability of air bubbles stabilized by mixtures of hydrophobin and \hat{l}^2 -casein. Food Hydrocolloids, 2014, 34, 119-127.	10.7	44
45	Effect of particle adsorption rates on the disproportionation process in pickering stabilised bubbles. Journal of Chemical Physics, 2014, 140, 204713.	3.0	19
46	The effect of nanoparticles on the phase separation of waxy cornÂstarch+locust bean gum or guar gum. Food Hydrocolloids, 2014, 42, 92-99.	10.7	52
47	Interfacial Study of Class II Hydrophobin and Its Mixtures with Milk Proteins: Relationship to Bubble Stability. Journal of Agricultural and Food Chemistry, 2013, 61, 1554-1562.	5.2	18
48	Effect of Oil Droplets and Their Solid/Liquid Composition on the Phase Separation of Protein–Polysaccharide Mixtures. Langmuir, 2013, 29, 9841-9848.	3.5	27
49	Structure and oxidative stability of oil in water emulsions as affected by rutin and homogenization procedure. Food Chemistry, 2012, 134, 1418-1424.	8.2	52
50	Microstructure and elastic modulus of mixed gels of gelatin+oxidized starch: Effect of pH. Food Hydrocolloids, 2012, 26, 286-292.	10.7	17
51	Effects of pH on the ability of flavonoids to act as Pickering emulsion stabilizers. Colloids and Surfaces B: Biointerfaces, 2012, 92, 84-90.	5.0	114
52	Particle-Stabilizing Effects of Flavonoids at the Oilâ [^] 'Water Interface. Journal of Agricultural and Food Chemistry, 2011, 59, 2636-2645.	5.2	140
53	Preparation and Characterization of the Foam-Stabilizing Properties of Cellulose–Ethyl Cellulose Complexes for Use in Foods. Journal of Agricultural and Food Chemistry, 2011, 59, 13277-13288.	5.2	18
54	Modified starch granules as particle-stabilizers of oil-in-water emulsions. Food Hydrocolloids, 2011, 25, 42-55.	10.7	282

#	Article	IF	Citations
55	Stabilization of foams and emulsions by mixtures of surface active food-grade particles and proteins. Food Hydrocolloids, 2011, 25, 627-638.	10.7	150
56	Rheological properties of protein films. Current Opinion in Colloid and Interface Science, 2011, 16, 27-35.	7.4	159
57	Brewster angle microscopy of adsorbed protein films at air–water and oil–water interfaces after compression, expansion and heat processing. Food Hydrocolloids, 2009, 23, 1190-1197.	10.7	22
58	Bubble stability in the presence of oil-in-water emulsion droplets: Influence of surface shear versus dilatational rheology. Food Hydrocolloids, 2009, 23, 1198-1208.	10.7	51
59	Mixed Layers of Sodium Caseinate + Dextran Sulfate: Influence of Order of Addition to Oilâ°'Water Interface. Langmuir, 2009, 25, 10026-10037.	3.5	108
60	Interfacial Structuring in a Phase-Separating Mixed Biopolymer Solution Containing Colloidal Particles. Langmuir, 2009, 25, 1300-1305.	3.5	87
61	Development of a model whipped cream: Effects of emulsion droplet liquid/solid character and added hydrocolloid. Food Hydrocolloids, 2008, 22, 690-699.	10.7	50
62	Whipped cream-like textured systems based on acidified caseinate-stabilized oil-in-water emulsions. International Dairy Journal, 2008, 18, 1011-1021.	3.0	35
63	Morphological Changes in Adsorbed Protein Films at the Oilâ^'Water Interface Subjected to Compression, Expansion, and Heat Processing. Langmuir, 2008, 24, 1979-1988.	3.5	23
64	Optimising the viability during storage of freeze-dried cell preparations of Campylobacter jejuni. Cryobiology, 2007, 54, 265-270.	0.7	35
65	Morphological Changes in Adsorbed Protein Films at the Airâ^'Water Interface Subjected to Large Area Variations, as Observed by Brewster Angle Microscopy. Langmuir, 2007, 23, 5005-5013.	3.5	21
66	Stabilization of bubbles and foams. Current Opinion in Colloid and Interface Science, 2007, 12, 232-241.	7.4	263
67	Particle Tracking Using Confocal Microscopy to Probe the Microrheology in a Phase-Separating Emulsion Containing Nonadsorbing Polysaccharide. Langmuir, 2006, 22, 4710-4719.	3.5	105
68	Stabilization of carbon dioxide-in-water emulsions by proteins. Chemical Communications, 2006, , 1410.	4.1	4
69	Influence of Ionic Surfactants on the Microstructure of Heat-Set \hat{l}^2 -Lactoglobulin-Stabilized Emulsion Gels. Food Biophysics, 2006, 1, 133-143.	3.0	13
70	Effect of thickeners on the coalescence of protein-stabilized air bubbles undergoing a pressure drop. Food Hydrocolloids, 2006, 20, 114-123.	10.7	18
71	Microstructural evolution of viscoelastic emulsions stabilised by sodium caseinate and xanthan gum. Journal of Colloid and Interface Science, 2005, 284, 714-728.	9.4	152
72	Coalescence of Protein-Stabilized Bubbles Undergoing Expansion at a Simultaneously Expanding Planar Airâ [^] 'Water Interface. Langmuir, 2005, 21, 4622-4630.	3.5	21

#	Article	IF	Citations
73	Foam stability: proteins and nanoparticles. Current Opinion in Colloid and Interface Science, 2004, 9, 314-320.	7.4	302
74	Factors Controlling the Formation and Stability of Air Bubbles Stabilized by Partially Hydrophobic Silica Nanoparticles. Langmuir, 2004, 20, 8517-8525.	3.5	269
75	Disproportionation of clustered protein-stabilized bubbles at planar air–water interfaces. Journal of Colloid and Interface Science, 2003, 263, 47-58.	9.4	36
76	Interfacial shear rheological behaviour of proteins in three-phase partitioning systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 213, 93-103.	4.7	34
77	Coalescence stability of gas bubbles subjected to rapid pressure change at a planar air/water interface. Colloids and Surfaces B: Biointerfaces, 2003, 30, 237-248.	5.0	17
78	Outstanding Stability of Particle-Stabilized Bubbles. Langmuir, 2003, 19, 3106-3108.	3.5	293
79	Response of Adsorbed Protein Films to Rapid Expansion. Langmuir, 2002, 18, 9476-9484.	3.5	35
80	Surface Pressure Isotherms, Dilatational Rheology, and Brewster Angle Microscopy of Insoluble Monolayers of Sugar Monoesters. Langmuir, 2002, 18, 4765-4774.	3.5	29
81	Technique for Studying the Effects of Rapid Surface Expansion on Bubble Stability. Langmuir, 2002, 18, 5007-5014.	3.5	22
82	Kinetics of Disproportionation of Air Bubbles beneath a Planar Air–Water Interface Stabilized by Food Proteins. Journal of Colloid and Interface Science, 2002, 252, 202-213.	9.4	100
83	Interfacial rheology of food emulsifiers and proteins. Current Opinion in Colloid and Interface Science, 2002, 7, 426-431.	7.4	268
84	Interfacial Shear Rheology of Aged and Heat-Treated β-Lactoglobulin Films: Displacement by Nonionic Surfactant. Journal of Agricultural and Food Chemistry, 2000, 48, 1491-1497.	5.2	112
85	Simulation and Experiments on Colloidal Particle Capture in a Shear Field. Langmuir, 2000, 16, 9784-9791.	3.5	10
86	Enhancement of the Foaming Properties of Protein Dried in the Presence of Trehalose. Journal of Agricultural and Food Chemistry, 1999, 47, 4984-4991.	5.2	30
87	Dilatational rheology of protein+non-ionic surfactant films at air–water and oil–water interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 143, 211-219.	4.7	84
88	Observation of the Dynamic Colloidal Interaction Forces between Casein-Coated Latex Particles. Langmuir, 1998, 14, 3466-3469.	3.5	15
89	Adsorption Kinetics of Nonradiolabeled Lysozyme via Surface Pressureâ^'Area Isotherms. Langmuir, 1997, 13, 1850-1852.	3.5	10
90	Cross-Linking of Milk Proteins with Transglutaminase at the Oilâ [*] Water Interface. Journal of Agricultural and Food Chemistry, 1997, 45, 2514-2519.	5.2	79

#	Article	IF	CITATION
91	Equilibrium and dynamic surface pressure-area measurements on protein films at air-water and oil-water interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 125, 73-83.	4.7	51
92	A Novel Langmuir Trough for Equilibrium and Dynamic Measurements on Airâ^'Water and Oilâ^'Water Monolayers. Langmuir, 1996, 12, 5973-5976.	3.5	76
93	Interfacial Rheology and the Dynamic Properties of Adsorbed Films of Food Proteins and Surfactants Food Science and Technology Research, 1996, 2, 131-145.	0.2	98
94	Mixed-Protein Films Adsorbed at the Oil-Water Interface. ACS Symposium Series, 1987, , 118-134.	0.5	35
95	Chapter 24. Enhancement of Stability of Bubbles to Disproportionation Using Hydrophilic Silica Particles Mixed with Surfactants or Proteins., 0,, 357-368.		7
96	Chapter 25. Coalescence of Expanding Bubbles: Effects of Protein Type and Included Oil Droplets. , 0, , 369-382.		3