Himarati Mondal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5502991/publications.pdf

Version: 2024-02-01

17	692	14	17
papers	citations	h-index	g-index
17	17	17	527
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
	Synthesis of guar gum- <i>g</i> -(acrylic acid- <i>co</i> -acrylamide- <i>co</i> -3-acrylamido propanoic) Tj ETQq1 1	0.78431	4 rgBT /Overloc
1	mechanism of Pb(<scp>ii</scp>)/Cd(<scp>ii</scp>)/Cu(<scp>ii</scp>)/MB/MV. Polymer Chemistry, 2017, 8, 6750-6777.	1.9	90
2	Systematic synthesis of pectin-g-(sodium acrylate-co-N-isopropylacrylamide) interpenetrating polymer network for superadsorption of dyes/M(<scp>ii</scp>): determination of physicochemical changes in loaded hydrogels. Polymer Chemistry, 2017, 8, 3211-3237.	1.9	80
3	Carbohydrate and collagen-based doubly-grafted interpenetrating terpolymer hydrogel via N–H activated in situ allocation of monomer for superadsorption of Pb(II), Hg(II), dyes, vitamin-C, and p-nitrophenol. Journal of Hazardous Materials, 2019, 369, 746-762.	6.5	71
4	An <i>in situ</i> approach for the synthesis of a gum ghatti- <i>g</i> -interpenetrating terpolymer network hydrogel for the high-performance adsorption mechanism evaluation of Cd(<scp>ii</scp>), Pb(<scp>ii</scp>), Bi(<scp>iii</scp>) and Sb(<scp>iii</scp>). Journal of Materials Chemistry A, 2018, 6, 8078-8100.	5.2	68
5	Pectin-grafted terpolymer superadsorbent via N–H activated strategic protrusion of monomer for removals of Cd(II), Hg(II), and Pb(II). Carbohydrate Polymers, 2019, 206, 778-791.	5.1	61
6	Starch-g-tetrapolymer hydrogel via in situ attached monomers for removals of Bi(III) and/or Hg(II) and dye(s): RSM-based optimization. Carbohydrate Polymers, 2019, 213, 428-440.	5.1	45
7	In Situ Allocation of a Monomer in Pectin- $\langle i \rangle g \langle i \rangle$ -Terpolymer Hydrogels and Effect of Comonomer Compositions on Superadsorption of Metal lons/Dyes. ACS Omega, 2018, 3, 4163-4180.	1.6	43
8	Guar Gum-Grafted Terpolymer Hydrogels for Ligand-Selective Individual and Synergistic Adsorption: Effect of Comonomer Composition. ACS Omega, 2018, 3, 472-494.	1.6	43
9	Microstructural analyses of loaded and/or unloaded semisynthetic porous material for understanding of superadsorption and optimization by response surface methodology. Journal of Environmental Chemical Engineering, 2018, 6, 289-310.	3.3	38
10	Chitosan-grafted tetrapolymer using two monomers: pH-responsive high-performance removals of $Cu(II)$, $Cd(II)$, $Pb(II)$, dichromate, and biphosphate and analyses of adsorbed microstructures. Environmental Research, 2019, 179, 108839.	3.7	38
11	Tetrapolymer Network Hydrogels via Gum Ghatti-Grafted and N–H/C–H-Activated Allocation of Monomers for Composition-Dependent Superadsorption of Metal Ions. ACS Omega, 2018, 3, 10692-10708.	1.6	32
12	Scale-up one-pot synthesis of waste collagen and apple pomace pectin incorporated pentapolymer biocomposites: Roles of waste collagen for elevations of properties and unary/ ternary removals of Ti(IV), As(V), and $V(V)$. Journal of Hazardous Materials, 2021, 409, 124873.	6. 5	19
13	One-pot synthesis of sodium alginate-grafted-terpolymer hydrogel for As(III) and V(V) removal: In situ anchored comonomer and DFT studies on structures. Journal of Environmental Management, 2021, 294, 112932.	3.8	17
14	Structures, Properties, and Performancesâ€"Relationships of Polymeric Membranes for Pervaporative Desalination. Membranes, 2019, 9, 58.	1.4	16
15	Synthesis of pH-responsive sodium alginate-g-tetrapolymers via N C and O C coupled in situ monomers: A reusable optimum hydrogel for removal of plant stressors. Journal of Molecular Liquids, 2020, 319, 114097.	2.3	12
16	New property-performance optimization of scalable alginate-g-terpolymer for Ce(IV), Mo(VI), and W(VI) exclusions. Carbohydrate Polymers, 2020, 245, 116370 .	5.1	11
17	Synthesis of gum tragacanth-grafted pentapolymer hydrogels for As(III) exclusion: Roles of microwaves, RSM optimization, and DFT studies. International Journal of Biological Macromolecules, 2021, 184, 909-925.	3.6	8