Masaki Ishikawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5502344/publications.pdf

Version: 2024-02-01

23 papers 2,586 citations

471509 17 h-index 642732 23 g-index

24 all docs

24 docs citations

times ranked

24

3482 citing authors

#	Article	IF	CITATIONS
1	The Selaginella Genome Identifies Genetic Changes Associated with the Evolution of Vascular Plants. Science, 2011, 332, 960-963.	12.6	794
2	LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature, 2003, 423, 995-999.	27.8	446
3	Expansion of the Cell Plate in Plant Cytokinesis Requires a Kinesin-like Protein/MAPKKK Complex. Cell, 2002, 109, 87-99.	28.9	223
4	The NPK1 mitogen-activated protein kinase kinase kinase is a regulator of cell-plate formation in plant cytokinesis. Genes and Development, 2001, 15, 352-363.	5.9	192
5	NQK1/NtMEK1 is a MAPKK that acts in the NPK1 MAPKKK-mediated MAPK cascade and is required for plant cytokinesis. Genes and Development, 2003, 17, 1055-1067.	5.9	175
6	<i>WOX13</i> - <i>like</i> genes are required for reprogramming of leaf and protoplast cells into stem cells in the moss <i>Physcomitrella patens</i> . Development (Cambridge), 2014, 141, 1660-1670.	2.5	136
7	The AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 genes, which encode functionally redundant kinesins, are essential for cytokinesis in Arabidopsis. Genes To Cells, 2004, 9, 1199-1211.	1.2	121
8	<i>Physcomitrella</i> Cyclin-Dependent Kinase A Links Cell Cycle Reactivation to Other Cellular Changes during Reprogramming of Leaf Cells Â. Plant Cell, 2011, 23, 2924-2938.	6.6	98
9	System for Stable \hat{I}^2 -Estradiol-Inducible Gene Expression in the Moss Physcomitrella patens. PLoS ONE, 2013, 8, e77356.	2.5	71
10	The ArabidopsisSPA1gene is required for circadian clock function and photoperiodic flowering. Plant Journal, 2006, 46, 736-746.	5.7	47
11	The NPK1 mitogen-activated protein kinase kinase kinase contains a functional nuclear localization signal at the binding site for the NACK1 kinesin-like protein. Plant Journal, 2002, 32, 789-798.	5.7	41
12	MAPKKK-Related protein kinase NPK1: Regulation of the M phase of plant cell cycle. Journal of Plant Research, 1998, 111, 243-246.	2.4	40
13	Single-cell transcriptome analysis of Physcomitrella leaf cells during reprogramming using microcapillary manipulation. Nucleic Acids Research, 2019, 47, 4539-4553.	14.5	39
14	A Lin28 homologue reprograms differentiated cells to stem cells in the moss Physcomitrella patens. Nature Communications, 2017, 8, 14242.	12.8	37
15	Physcomitrella STEMIN transcription factor induces stem cell formation with epigenetic reprogramming. Nature Plants, 2019, 5, 681-690.	9.3	32
16	DNA damage triggers reprogramming of differentiated cells into stem cells in Physcomitrella. Nature Plants, 2020, 6, 1098-1105.	9.3	22
17	Oncogene 6b from Agrobacterium tumefaciens Induces Abaxial Cell Division at Late Stages of Leaf Development and Modifies Vascular Development in Petioles. Plant and Cell Physiology, 2006, 47, 664-672.	3.1	20
18	Plant stem cell research is uncovering the secrets of longevity and persistent growth. Plant Journal, 2021, 106, 326-335.	5.7	19

#	Article	IF	CITATIONS
19	Control of plant cytokinesis by an NPK1–mediated mitogen–activated protein kinase cascade. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 767-775.	4.0	11
20	Cell cycle reentry from the late S phase: implications from stem cell formation in the moss Physcomitrella patens. Journal of Plant Research, 2015, 128, 399-405.	2.4	8
21	Overexpression of <i>ATG8/LC3</i> enhances wound-induced somatic reprogramming in <i>Physcomitrium patens</i> Autophagy, 2022, 18, 1463-1466.	9.1	7
22	Molecular mechanisms of reprogramming of differentiated cells into stem cells in the moss Physcomitrium patens. Current Opinion in Plant Biology, 2022, 65, 102123.	7.1	4
23	A PSTAIRE-type cyclin-dependent kinase controls light responses in land plants. Science Advances, 2022, 8, eabk2116.	10.3	2