
Karl E Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5502190/publications.pdf Version: 2024-02-01

KADI F TAVLOD

#	Article	IF	CITATIONS
1	An Overview of CMIP5 and the Experiment Design. Bulletin of the American Meteorological Society, 2012, 93, 485-498.	1.7	11,443
2	Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research, 2001, 106, 7183-7192.	3.3	5,740
3	Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 2016, 9, 1937-1958.	1.3	5,303
4	THE WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research. Bulletin of the American Meteorological Society, 2007, 88, 1383-1394.	1.7	2,484
5	Performance metrics for climate models. Journal of Geophysical Research, 2008, 113, .	3.3	951
6	Causes of Higher Climate Sensitivity in CMIP6 Models. Geophysical Research Letters, 2020, 47, e2019GL085782.	1.5	759
7	An Overview of the Results of the Atmospheric Model Intercomparison Project (AMIP I). Bulletin of the American Meteorological Society, 1999, 80, 29-55.	1.7	668
8	Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphereâ€ocean climate models. Geophysical Research Letters, 2012, 39, .	1.5	570
9	Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. Journal of Geophysical Research, 2000, 105, 7337-7356.	3.3	552
10	Interpretation of Cloud-Climate Feedback as Produced by 14 Atmospheric General Circulation Models. Science, 1989, 245, 513-516.	6.0	460
11	A search for human influences on the thermal structure of the atmosphere. Nature, 1996, 382, 39-46.	13.7	397
12	Contributions of Anthropogenic and Natural Forcing to Recent Tropopause Height Changes. Science, 2003, 301, 479-483.	6.0	379
13	Monsoon changes for 6000 years ago: Results of 18 simulations from the Paleoclimate Modeling Intercomparison Project (PMIP). Geophysical Research Letters, 1999, 26, 859-862.	1.5	374
14	Volcanic contribution to decadal changes in tropospheric temperature. Nature Geoscience, 2014, 7, 185-189.	5.4	364
15	On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Climate Dynamics, 2006, 27, 17-38.	1.7	334
16	Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Science Advances, 2020, 6, eaba1981.	4.7	321
17	The Geoengineering Model Intercomparison Project (GeoMIP). Atmospheric Science Letters, 2011, 12, 162-167.	0.8	314
18	An overview of results from the Coupled Model Intercomparison Project. Global and Planetary Change, 2003, 37, 103-133.	1.6	305

KARL E TAYLOR

#	Article	IF	CITATIONS
19	Response of the climate system to atmospheric aerosols and greenhouse gases. Nature, 1994, 369, 734-737.	13.7	296
20	The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. Geoscientific Model Development, 2016, 9, 3751-3777.	1.3	282
21	Identification of human-induced changes in atmospheric moisture content. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15248-15253.	3.3	271
22	Amplification of Surface Temperature Trends and Variability in the Tropical Atmosphere. Science, 2005, 309, 1551-1556.	6.0	267
23	Impact of geoengineering schemes on the global hydrological cycle. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7664-7669.	3.3	260
24	Consistency of modelled and observed temperature trends in the tropical troposphere. International Journal of Climatology, 2008, 28, 1703-1722.	1.5	236
25	Contributions of Different Cloud Types to Feedbacks and Rapid Adjustments in CMIP5*. Journal of Climate, 2013, 26, 5007-5027.	1.2	235
26	OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project. Geoscientific Model Development, 2016, 9, 3231-3296.	1.3	223
27	CMIP5 Scientific Gaps and Recommendations for CMIP6. Bulletin of the American Meteorological Society, 2017, 98, 95-105.	1.7	207
28	An assessment of the radiative effects of anthropogenic sulfate. Journal of Geophysical Research, 1997, 102, 3761-3778.	3.3	201
29	Detecting and Attributing External Influences on the Climate System: A Review of Recent Advances. Journal of Climate, 2005, 18, 1291-1314.	1.2	198
30	Evaluating the presentâ€day simulation of clouds, precipitation, and radiation in climate models. Journal of Geophysical Research, 2008, 113, .	3.3	187
31	Behavior of tropopause height and atmospheric temperature in models, reanalyses, and observations: Decadal changes. Journal of Geophysical Research, 2003, 108, ACL 1-1.	3.3	185
32	Towards the detection and attribution of an anthropogenic effect on climate. Climate Dynamics, 1995, 12, 77-100.	1.7	175
33	Interpretation of Snow-Climate Feedback as Produced by 17 General Circulation Models. Science, 1991, 253, 888-892.	6.0	171
34	Estimating Shortwave Radiative Forcing and Response in Climate Models. Journal of Climate, 2007, 20, 2530-2543.	1.2	157
35	Incorporating model quality information in climate change detection and attribution studies. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14778-14783.	3.3	156
36	Separating signal and noise in atmospheric temperature changes: The importance of timescale. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	149

KARL E TAYLOR

#	Article	IF	CITATIONS
37	Forced and unforced ocean temperature changes in Atlantic and Pacific tropical cyclogenesis regions. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13905-13910.	3.3	145
38	High-resolution simulations of global climate, part 1: present climate. Climate Dynamics, 2003, 21, 371-390.	1.7	139
39	Quantifying components of aerosol-cloud-radiation interactions in climate models. Journal of Geophysical Research D: Atmospheres, 2014, 119, 7599-7615.	1.2	138
40	Uncertainties in observationally based estimates of temperature change in the free atmosphere. Journal of Geophysical Research, 1999, 104, 6305-6333.	3.3	136
41	Climate Forcings and Climate Sensitivities Diagnosed from Coupled Climate Model Integrations. Journal of Climate, 2006, 19, 6181-6194.	1.2	136
42	The Community Climate System Model. Bulletin of the American Meteorological Society, 2001, 82, 2357-2376.	1.7	131
43	Climate Model Intercomparisons: Preparing for the Next Phase. Eos, 2014, 95, 77-78.	0.1	129
44	Identifying human influences on atmospheric temperature. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 26-33.	3.3	117
45	Human-induced global ocean warming onÂmultidecadal timescales. Nature Climate Change, 2012, 2, 524-529.	8.1	116
46	Quantifying underestimates of long-term upper-ocean warming. Nature Climate Change, 2014, 4, 999-1005.	8.1	116
47	Identification of anthropogenic climate change using a second-generation reanalysis. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	112
48	Krakatoa's signature persists in the ocean. Nature, 2006, 439, 675-675.	13.7	101
49	Accounting for the effects of volcanoes and ENSO in comparisons of modeled and observed temperature trends. Journal of Geophysical Research, 2001, 106, 28033-28059.	3.3	98
50	Quantifying the Sources of Intermodel Spread in Equilibrium Climate Sensitivity. Journal of Climate, 2016, 29, 513-524.	1.2	98
51	Human and natural influences on the changing thermal structure of the atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17235-17240.	3.3	84
52	Interpreting Differential Temperature Trends at the Surface and in the Lower Troposphere. Science, 2000, 287, 1227-1232.	6.0	83
53	Intercomparison and interpretation of surface energy fluxes in atmospheric general circulation models. Journal of Geophysical Research, 1992, 97, 3711-3724.	3.3	81
54	Uncertainties in Carbon Dioxide Radiative Forcing in Atmospheric General Circulation Models.	6.0	81

Karl E Taylor

#	Article	IF	CITATIONS
55	Krakatoa lives: The effect of volcanic eruptions on ocean heat content and thermal expansion. Geophysical Research Letters, 2006, 33, .	1.5	76
56	Towards improved and more routine Earth system model evaluation in CMIP. Earth System Dynamics, 2016, 7, 813-830.	2.7	74
57	Influence of Satellite Data Uncertainties on the Detection of Externally Forced Climate Change. Science, 2003, 300, 1280-1284.	6.0	68
58	Relationship between temperature and precipitable water changes over tropical oceans. Geophysical Research Letters, 2007, 34, .	1.5	67
59	Requirements for a global data infrastructure in support of CMIP6. Geoscientific Model Development, 2018, 11, 3659-3680.	1.3	62
60	Present and future surface climate in the western USA as simulated by 15 global climate models. Climate Dynamics, 2004, 23, 455-472.	1.7	55
61	A More Powerful Reality Test for Climate Models. Eos, 2016, 97, .	0.1	50
62	Simulated and observed variability in ocean temperature and heat content. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10768-10773.	3.3	48
63	An Analysis of Cloud Liquid Water Feedback and Global Climate Sensitivity in a General Circulation Model. Journal of Climate, 1992, 5, 907-919.	1.2	46
64	Observed and Projected Changes to the Precipitation Annual Cycle. Journal of Climate, 2017, 30, 4983-4995.	1.2	46
65	Variability of ocean heat uptake: Reconciling observations and models. Journal of Geophysical Research, 2006, 111, .	3.3	43
66	Comparison of the seasonal change in cloud-radiative forcing from atmospheric general circulation models and satellite observations. Journal of Geophysical Research, 1997, 102, 16593-16603.	3.3	41
67	Quantifying the agreement between observed and simulated extratropical modes of interannual variability. Climate Dynamics, 2019, 52, 4057-4089.	1.7	40
68	External Influences on Modeled and Observed Cloud Trends. Journal of Climate, 2015, 28, 4820-4840.	1.2	37
69	A data model of the Climate and Forecast metadata conventions (CF-1.6) with a software implementation (cf-python v2.1). Geoscientific Model Development, 2017, 10, 4619-4646.	1.3	37
70	Planktonic dimethylsulfide and cloud albedo: An estimate of the feedback response. Climatic Change, 1991, 18, 1-15.	1.7	29
71	The Reproducibility of Observational Estimates of Surface and Atmospheric Temperature Change. Science, 2011, 334, 1232-1233.	6.0	28
72	Evolving Obs4MIPs to Support Phase 6 of the Coupled Model Intercomparison Project (CMIP6). Bulletin of the American Meteorological Society, 2015, 96, ES131-ES133.	1.7	27

KARL E TAYLOR

#	Article	IF	CITATIONS
73	The Roles of Mean Meridional Motions and Large-Scale Eddies in Zonally Averaged Circulations. Journals of the Atmospheric Sciences, 1980, 37, 1-19.	0.6	26
74	Documenting numerical experiments in support of the Coupled Model Intercomparison Project Phase 6 (CMIP6). Geoscientific Model Development, 2020, 13, 2149-2167.	1.3	26
75	Model test of CCNâ€cloud albedo climate forcing. Geophysical Research Letters, 1990, 17, 607-610.	1.5	25
76	How Can We Advance Our Weather and Climate Models as a Community?. Bulletin of the American Meteorological Society, 2002, 83, 431-434.	1.7	25
77	The Influence of Subsurface Energy Storage on Seasonal Temperature Variations. Journal of Applied Meteorology, 1976, 15, 1129-1138.	1.1	24
78	GCM evaluation of a mechanism for El Niño triggering by the El Chichón ash cloud. Geophysical Research Letters, 1995, 22, 2369-2372.	1.5	24
79	An Analysis of the Biases in Traditional Cyclone Frequency Maps. Monthly Weather Review, 1986, 114, 1481-1490.	0.5	23
80	Relative detectability of greenhouse-gas and aerosol climate change signals. Climate Dynamics, 1998, 14, 781-790.	1.7	22
81	The CMIP6 Data Request (DREQ, version 01.00.31). Geoscientific Model Development, 2020, 13, 201-224.	1.3	22
82	Documenting Climate Models and Their Simulations. Bulletin of the American Meteorological Society, 2013, 94, 623-627.	1.7	20
83	Competing Influences of Anthropogenic Warming, ENSO, and Plant Physiology on Future Terrestrial Aridity. Journal of Climate, 2017, 30, 6883-6904.	1.2	20
84	Toward Standardized Data Sets for Climate Model Experimentation. Eos, 2018, 99, .	0.1	20
85	Upper limit for sea ice albedo feedback contribution to global warming. Journal of Geophysical Research, 1991, 96, 9169-9174.	3.3	17
86	Observations for Model Intercomparison Project (Obs4MIPs): status for CMIP6. Geoscientific Model Development, 2020, 13, 2945-2958.	1.3	17
87	Formulas for calculating available potential energy over uneven topography. Tellus, 1979, 31, 236-245.	0.4	16
88	Moving beyond the Total Sea Ice Extent in Gauging Model Biases. Journal of Climate, 2016, 29, 8965-8987.	1.2	16
89	Highâ€Frequency Intermittency in Observed and Modelâ€Simulated Precipitation. Geophysical Research Letters, 2018, 45, 12,514.	1.5	16
90	The effect of horizontal resolution on ocean surface heat fluxes in the ECMWF model. Climate Dynamics, 1993, 9, 17-32.	1.7	14

Karl E Taylor

#	Article	IF	CITATIONS
91	Coupled Climate Model appraisal: A benchmark for future studies. Eos, 2006, 87, 185.	0.1	14
92	A Vertical Finite-Difference Scheme for Hydrostatic and Nonhydrostatic Equations. Monthly Weather Review, 1984, 112, 1398-1402.	0.5	11
93	Sulphate aerosols and climate. Nature, 1989, 340, 438-438.	13.7	11
94	Comment on "Climate forcing by the volcanic eruption of Mount Pinatubo―by David H. Douglass and Robert S. Knox. Geophysical Research Letters, 2005, 32, .	1.5	11
95	The Potential Effect of GCM Uncertainties and Internal Atmospheric Variability on Anthropogenic Signal Detection. Journal of Climate, 1998, 11, 659-675.	1.2	10
96	Projected Effects of Increasing Concentrations of Carbon Dioxide and Trace Gases on Climate. ASA Special Publication, 0, , 1-17.	0.8	10
97	Limitations of the equivalent CO2approximation in climate change simulations. Journal of Geophysical Research, 2001, 106, 22593-22603.	3.3	9
98	Coupled ocean-atmosphere climate simulations compared with simulations using prescribed sea surface temperature: effect of a "perfect ocean― Global and Planetary Change, 2004, 41, 1-14.	1.6	9
99	Correlation approaches to detection. Geophysical Research Letters, 2000, 27, 2973-2976.	1.5	8
100	Formulas for calculating available potential energy over uneven topography. Tellus, 1979, 31, 236-245.	0.4	6
101	The response of the high-latitude thermosphere to geomagnetic substorms. Advances in Space Research, 1985, 5, 289-292.	1.2	6
102	Scale space methods for climate model analysis. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5082-5097.	1.2	6
103	Benchmarking performance changes in the simulation of extratropical modes of variability across CMIP generations. Journal of Climate, 2021, , 1-70.	1.2	6
104	Climate Models for the Study of Paleoclimates. , 1994, , 21-41.		2
105	Fact Sheet for "Consistency of Modeled and Observed Temperature Trends in the Tropical Troposphere― , 2018, , 73-84.		1
106	On the Validity of Climate Models. Eos, 2007, 88, 121.	0.1	0