Young Jin Yoo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5501713/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wearable Force Touch Sensor Array Using a Flexible and Transparent Electrode. Advanced Functional Materials, 2017, 27, 1605286.	14.9	151
2	Colored, Daytime Radiative Coolers with Thinâ€Film Resonators for Aesthetic Purposes. Advanced Optical Materials, 2018, 6, 1800707.	7.3	116
3	Efficient Light Absorption by GaN Truncated Nanocones for High Performance Water Splitting Applications. ACS Applied Materials & Interfaces, 2018, 10, 28672-28678.	8.0	57
4	Stretchable colour-sensitive quantum dot nanocomposites for shape-tunable multiplexed phototransistor arrays. Nature Nanotechnology, 2022, 17, 849-856.	31.5	42
5	Ultra-thin films with highly absorbent porous media fine-tunable for coloration and enhanced color purity. Nanoscale, 2017, 9, 2986-2991.	5.6	41
6	Flexible, Largeâ€Area Covert Polarization Display Based on Ultrathin Lossy Nanocolumns on a Metal Film. Advanced Functional Materials, 2020, 30, 1908592.	14.9	39
7	Large area fabrication of engineered microlens array with low sag height for light-field imaging. Optics Express, 2019, 27, 4435.	3.4	30
8	Largeâ€Area Virus Coated Ultrathin Colorimetric Sensors with a Highly Lossy Resonant Promoter for Enhanced Chromaticity. Advanced Science, 2020, 7, 2000978.	11.2	28
9	Nanoporous GaN/ <i>n-</i> type GaN: A Cathode Structure for ITO-Free Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 3295-3303.	17.4	23
10	A review of tunable photonics: Optically active materials and applications from visible to terahertz. IScience, 2022, 25, 104727.	4.1	22
11	Mechanically robust antireflective moth-eye structures with a tailored coating of dielectric materials. Optical Materials Express, 2019, 9, 4178.	3.0	21
12	Mechanotunable optical filters based on stretchable silicon nanowire arrays. Nanophotonics, 2020, 9, 3287-3293.	6.0	20
13	Reflective color filter with precise control of the color coordinate achieved by stacking silicon nanowire arrays onto ultrathin optical coatings. Scientific Reports, 2019, 9, 3350.	3.3	19
14	Standard red green blue (sRGB) color representation with a tailored dual-resonance mode in metal/dielectric stacks. Optical Materials Express, 2019, 9, 3342.	3.0	19
15	Enlarged Color Gamut Representation Enabled by Transferable Silicon Nanowire Arrays on Metal–Insulator–Metal Films. ACS Applied Materials & Interfaces, 2019, 11, 11849-11856.	8.0	18
16	Perovskite microcells fabricated using swelling-induced crack propagation for colored solar windows. Nature Communications, 2022, 13, 1946.	12.8	18
17	Recent advances in imaging systems and photonic nanostructures inspired by insect eye geometry. Applied Spectroscopy Reviews, 2018, 53, 112-128.	6.7	16
18	Dual-Mode Colorimetric Sensor Based on Ultrathin Resonating Facilitator Capable of Nanometer-Thick Virus Detection for Environment Monitoring. ACS Applied Nano Materials, 2020, 3, 6636-6644.	5.0	16

Young Jin Yoo

#	Article	IF	CITATIONS
19	Double-Sided Anti-Reflection Nanostructures on Optical Convex Lenses for Imaging Applications. Coatings, 2019, 9, 404.	2.6	14
20	Characterization of Nanomaterials by Locally Determining Their Complex Permittivity with Scattering-Type Scanning Near-Field Optical Microscopy. ACS Applied Nano Materials, 2020, 3, 1250-1262.	5.0	14
21	Enhanced Light Harvesting in Photovoltaic Devices Using an Edge-Located One-Dimensional Grating Polydimethylsiloxane Membrane. ACS Applied Materials & Interfaces, 2019, 11, 36020-36026.	8.0	13
22	Gires–Tournois Immunoassay Platform for Labelâ€Free Brightâ€Field Imaging and Facile Quantification of Bioparticles. Advanced Materials, 2022, 34, e2110003.	21.0	12
23	Optical Design of Porous ZnO/TiO ₂ Films for Highly Transparent Glasses with Broadband Ultraviolet Protection. Journal of Nanomaterials, 2017, 2017, 1-8.	2.7	9
24	Colored, Covert Infrared Display through Hybrid Planarâ€Plasmonic Cavities. Advanced Optical Materials, 2021, 9, 2100429.	7.3	9
25	Functional photonic structures for external interaction with flexible/wearable devices. Nano Research, 2021, 14, 2904-2918.	10.4	8
26	Singleâ€Material, Nearâ€Infrared Selective Absorber Based on Refractive Indexâ€Tunable Tamm Plasmon Structure. Advanced Optical Materials, 2022, 10, 2102388.	7.3	7
27	A Wide Field-of-View Light-Field Camera with Adjustable Multiplicity for Practical Applications. Sensors, 2022, 22, 3455.	3.8	5
28	Colored, Covert Infrared Display through Hybrid Planarâ€Plasmonic Cavities (Advanced Optical) Tj ETQq0 0 0 rgl	3T LOverlov 7.3	ck 10 Tf 50 3
29	Fabrication of Ultra-thin Color Films with Highly Absorbing Media Using Oblique Angle Deposition. Journal of Visualized Experiments, 2017, , .	0.3	0
30	Reflective Color Filters with Enlarged Color Gamut Enabled by Stacking Silicon Nanowires on Thin-film Coatings. , 2019, , .		0
31	Iridescent Retroreflective Structural Color Based on Micro Concavity Array. , 2021, , .		0
32	Polarization Sensitive Ultra-thin Color Filter with Highly Structured Nano-column. , 2019, , .		0
33	Enhanced Color Purities for Additive Colors Enabled by 1D Metal-insulator Resonator. , 2019, , .		0
34	Quantitative imaging of advanced nanostructured materials with scattering-type scanning near field optical microscopy. , 2019, , .		0
35	Covert polarization display based on ultra-thin lossy nanocolumns with wide color selectivity. , 2020, , \cdot		0
36	Virus-based ultra-thin film colorimetric sensors for enhanced chromaticity. , 2020, , .		0

#	Article	IF	CITATIONS
37	Editorial for the Topic on Micromachining for Advanced Biological Imaging. Micromachines, 2022, 13, 474.	2.9	0
38	Singleâ€Material, Nearâ€Infrared Selective Absorber Based on Refractive Indexâ€Tunable Tamm Plasmon Structure (Advanced Optical Materials 6/2022). Advanced Optical Materials, 2022, 10, .	7.3	0