
Yongjun Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5501627/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 2015, 110, 1541-1575.	3.8	374
2	A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones. Geology, 2015, 43, 247-250.	4.4	359
3	High-Mg Diorite from Qulong in Southern Tibet: Implications for the Genesis of Adakite-like Intrusions and Associated Porphyry Cu Deposits in Collisional Orogens. Journal of Petrology, 2015, 56, 227-254.	2.8	193
4	Fluid flux melting generated postcollisional high Sr/Y copper ore–forming water-rich magmas in Tibet. Geology, 2015, 43, 583-586.	4.4	177
5	Cretaceous–Cenozoic tectonic history of the Jiaojia Fault and gold mineralization in the Jiaodong Peninsula, China: constraints from zircon U–Pb, illite K–Ar, and apatite fission track thermochronometry. Mineralium Deposita, 2015, 50, 987-1006.	4.1	171
6	Geochemical, Sr-Nd-Pb, and Zircon Hf-O Isotopic Compositions of Eocene-Oligocene Shoshonitic and Potassic Adakite-like Felsic Intrusions in Western Yunnan, SW China: Petrogenesis and Tectonic Implications. Journal of Petrology, 2013, 54, 1309-1348.	2.8	170
7	Terrane boundary and spatio-temporal distribution of ore deposits in the Sanjiang Tethyan Orogen: Insights from zircon Hf-isotopic mapping. Earth-Science Reviews, 2016, 156, 39-65.	9.1	145
8	Intracontinental Eocene-Oligocene Porphyry Cu Mineral Systems of Yunnan, Western Yangtze Craton, China: Compositional Characteristics, Sources, and Implications for Continental Collision Metallogeny. Economic Geology, 2013, 108, 1541-1576.	3.8	144
9	Two distinct origins for Archean greenstone belts. Earth and Planetary Science Letters, 2018, 487, 106-116.	4.4	125
10	Zircon SHRIMP U–Pb geochronology of potassic felsic intrusions in western Yunnan, SW China: Constraints on the relationship of magmatism to the Jinsha suture. Gondwana Research, 2012, 22, 737-747.	6.0	121
11	Paleogene post-collisional lamprophyres in western Yunnan, western Yangtze Craton: Mantle source and tectonic implications. Lithos, 2015, 233, 139-161.	1.4	108
12	A metasomatized lithospheric mantle control on the metallogenic signature of post-subduction magmatism. Nature Communications, 2019, 10, 3511.	12.8	108
13	No evidence for high-pressure melting of Earth's crust in the Archean. Nature Communications, 2019, 10, 5559.	12.8	97
14	Recycled volatiles determine fertility of porphyry deposits in collisional settings. American Mineralogist, 2021, 106, 656-661.	1.9	80
15	Miocene Ultrapotassic, High-Mg Dioritic, and Adakite-like Rocks from Zhunuo in Southern Tibet: Implications for Mantle Metasomatism and Porphyry Copper Mineralization in Collisional Orogens. Journal of Petrology, 2018, 59, 341-386.	2.8	74
16	GIS-based 3D prospectivity mapping: A case study of Jiama copper-polymetallic deposit in Tibet, China. Ore Geology Reviews, 2015, 71, 611-632.	2.7	72
17	Oxygen isotopes trace the origins of Earth's earliest continental crust. Nature, 2021, 592, 70-75.	27.8	71
18	Processes of crust formation in the early Earth imaged through Hf isotopes from the East Pilbara Terrane. Precambrian Research, 2017, 297, 56-76.	2.7	67

Yongjun Lu

#	Article	IF	CITATIONS
19	Age, nature, and origin of Ordovician Zhibenshan granite from the Baoshan terrane in the Sanjiang region and its significance for understanding Proto-Tethys evolution. International Geology Review, 2015, 57, 1922-1939.	2.1	61
20	Age and origin of the Bulangshan and Mengsong granitoids and their significance for post-collisional tectonics in the Changning–Menglian Paleo-Tethys Orogen. Journal of Asian Earth Sciences, 2015, 113, 656-676.	2.3	61
21	The Paleoproterozoic diorite dykes in the southern margin of the North China Craton: Insight into rift-related magmatism. Precambrian Research, 2016, 277, 26-46.	2.7	58
22	Characterization and origin of the Taishanmiao aluminous A-type granites: implications for Early Cretaceous lithospheric thinning at the southern margin of the North China Craton. International Journal of Earth Sciences, 2016, 105, 1563-1589.	1.8	38
23	Redox-controlled generation of the giant porphyry Cu–Au deposit at Pulang, southwest China. Contributions To Mineralogy and Petrology, 2019, 174, 1.	3.1	37
24	Geochemical and isotopic constraints on the genesis of the Jueluotage native copper mineralized basalt, Eastern Tianshan, Northwest China. Journal of Asian Earth Sciences, 2013, 73, 317-333.	2.3	34
25	Hydrothermal evolution and ore genesis of the Beiya giant Au polymetallic deposit, western Yunnan, China: Evidence from fluid inclusions and H–O–S–Pb isotopes. Ore Geology Reviews, 2017, 90, 847-862.	2.7	34
26	Episodic Triassic magmatism in the western South Qinling Orogen, central China, and its implications. Geological Journal, 2014, 49, 402-423.	1.3	33
27	A Downgoing Indian Lithosphere Control on Along-Strike Variability of Porphyry Mineralization in the Gangdese Belt of Southern Tibet. Economic Geology, 2021, 116, 29-46.	3.8	25
28	Zircon U–Pb dating, geochemistry and Sr–Nd–Hf–O isotopes for the Baimaxueshan granodiorites and mafic microgranulars enclaves in the Sanjiang Orogen: Evidence for westward subduction of Paleo-Tethys. Gondwana Research, 2018, 62, 112-126.	6.0	21
29	Lower-Crustal Magmatic Hornblendite in North China Craton: Insight into the Genesis of Porphyry Cu Deposits. Economic Geology, 2015, 110, 1879-1904.	3.8	20
30	Magmatic Water Content and Crustal Evolution Control on Porphyry Systems: Insights from the Central Asian Orogenic Belt. Journal of Petrology, 2021, 62, .	2.8	13
31	Sulfur isotope systematics of granitoids from the Yilgarn Craton sheds new light on the fluid reservoirs of Neoarchean orogenic gold deposits. Geochimica Et Cosmochimica Acta, 2022, 326, 199-213.	3.9	11
32	Seismic evidence of two cryptic sutures in Northwestern Australia: Implications for the style of subduction during the Paleoproterozoic assembly of Columbia. Earth and Planetary Science Letters, 2022, 579, 117342.	4.4	10
33	Crustal structure control on porphyry copper systems in accretionary orogens: insights from Nd isotopic mapping in the Central Asian Orogenic Belt. Mineralium Deposita, 2022, 57, 631-641.	4.1	7
34	Apatite and zircon compositions for Miocene mineralizing and barren intrusions in the Gangdese porphyry copper belt of southern Tibet: Implication for ore control. Ore Geology Reviews, 2021, 139, 104474.	2.7	5
35	Megacrysts in the Cenozoic basalt of the Tuoyun Basin, Southwest Tianshan. Science in China Series D: Earth Sciences, 2007, 50, 55-66.	0.9	2