
Gavin J Clowry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5501517/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multimodal Threeâ€Dimensional Visualization Enhances Novice Learner Interpretation of Basic Crossâ€Sectional Anatomy. Anatomical Sciences Education, 2022, 15, 127-142.	3.7	19
2	Tyramide signal amplification coupled with multiple immunolabeling and <scp>RNAScope</scp> <i>in situ</i> hybridization in formaldehydeâ€fixed paraffinâ€embedded human fetal brain. Journal of Anatomy, 2022, 241, 33-41.	1.5	1
3	Reduced placental size and increased apoptosis are associated with prenatal nicotine exposure in rats European Review for Medical and Pharmacological Sciences, 2022, 26, 1586-1593.	0.7	1
4	Stem cell therapy for cerebral palsy: Proceeding with caution. Developmental Medicine and Child Neurology, 2022, 64, 1434-1435.	2.1	1
5	Hippocampal network hyperexcitability in young transgenic mice expressing human mutant alpha-synuclein. Neurobiology of Disease, 2021, 149, 105226.	4.4	10
6	Creative Destruction: A Basic Computational Model of Cortical Layer Formation. Cerebral Cortex, 2021, 31, 3237-3253.	2.9	6
7	Increased hippocampal excitability in miR-324-null mice. Scientific Reports, 2021, 11, 10452.	3.3	10
8	Multiple Origins of Secretagogin Expressing Cortical GABAergic Neuron Precursors in the Early Human Fetal Telencephalon. Frontiers in Neuroanatomy, 2020, 14, 61.	1.7	7
9	Expression patterns of ciliopathy genes ARL3 and CEP120 reveal roles in multisystem development. BMC Developmental Biology, 2020, 20, 26.	2.1	5
10	Mouse genetics reveals Barttin as a genetic modifier of Joubert syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1113-1118.	7.1	22
11	Selective Expression of Nicotinic Receptor Sub-unit mRNA in Early Human Fetal Forebrain. Frontiers in Molecular Neuroscience, 2020, 13, 72.	2.9	5
12	Embryonic and foetal expression patterns of the ciliopathy gene CEP164. PLoS ONE, 2020, 15, e0221914.	2.5	5
13	New insights into the development of the human cerebral cortex. Journal of Anatomy, 2019, 235, 432-451.	1.5	224
14	Expression of ventral telencephalon transcription factors ASCL1 and DLX2 in the early fetal human cerebral cortex. Journal of Anatomy, 2019, 235, 555-568.	1.5	21
15	Thalamocortical Afferents Innervate the Cortical Subplate much Earlier in Development in Primate than in Rodent. Cerebral Cortex, 2019, 29, 1706-1718.	2.9	26
16	Impaired Fast Network Oscillations and Mitochondrial Dysfunction in a Mouse Model of Alpha-synucleinopathy (A30P). Neuroscience, 2018, 377, 161-173.	2.3	12
17	Charting the protomap of the human telencephalon. Seminars in Cell and Developmental Biology, 2018, 76, 3-14.	5.0	24
18	Human neural stem cells dispersed in artificial ECM form cerebral organoids when grafted inÂvivo. Journal of Anatomy, 2018, 233, 155-166.	1.5	13

#	Article	IF	CITATIONS
19	Binding site density enables paralog-specific activity of SLM2 and Sam68 proteins in <i>Neurexin2</i> AS4 splicing control. Nucleic Acids Research, 2017, 45, gkw1277.	14.5	16
20	Neurexins 1–3 Each Have a Distinct Pattern of Expression in the Early Developing Human Cerebral Cortex. Cerebral Cortex, 2017, 27, 216-232.	2.9	38
21	Distinct cortical and sub-cortical neurogenic domains for GABAergic interneuron precursor transcription factors NKX2.1, OLIG2 and COUP-TFII in early fetal human telencephalon. Brain Structure and Function, 2017, 222, 2309-2328.	2.3	37
22	The Transcription Factors COUP-TFI and COUP-TFII have Distinct Roles in Arealisation and GABAergic Interneuron Specification in the Early Human Fetal Telencephalon. Cerebral Cortex, 2017, 27, 4971-4987.	2.9	48
23	HDBR Expression: A Unique Resource for Global and Individual Gene Expression Studies during Early Human Brain Development. Frontiers in Neuroanatomy, 2016, 10, 86.	1.7	72
24	Mechanical Flexibility Reduces the Foreign Body Response to Long-Term Implanted Microelectrodes in Rabbit Cortex. PLoS ONE, 2016, 11, e0165606.	2.5	55
25	A SLM2 Feedback Pathway Controls Cortical Network Activity and Mouse Behavior. Cell Reports, 2016, 17, 3269-3280.	6.4	21
26	Distinct expression patterns for type <scp>II</scp> topoisomerases IIA and IIB in the early foetal human telencephalon. Journal of Anatomy, 2016, 228, 452-463.	1.5	34
27	An enhanced role and expanded developmental origins for gammaâ€∎minobutyric acidergic interneurons in the human cerebral cortex. Journal of Anatomy, 2015, 227, 384-393.	1.5	30
28	Introduction: GABAergic neurotransmission in the human cerebral cortex: same rules apply?. Journal of Anatomy, 2015, 227, 383-383.	1.5	0
29	Improving Outcomes in Cerebral Palsy with Early Intervention: New Translational Approaches. Frontiers in Neurology, 2015, 6, 24.	2.4	11
30	The Early Fetal Development of Human Neocortical GABAergic Interneurons. Cerebral Cortex, 2015, 25, 631-645.	2.9	72
31	The sinusoidal probe: a new approach to improve electrode longevity. Frontiers in Neuroengineering, 2014, 7, 10.	4.8	87
32	Gap junction networks can generate both rippleâ€like and fast rippleâ€like oscillations. European Journal of Neuroscience, 2014, 39, 46-60.	2.6	53
33	What are the Best Animal Models for Testing Early Intervention in Cerebral Palsy?. Frontiers in Neurology, 2014, 5, 258.	2.4	46
34	Seeking clues in brain development to explain the extraordinary evolution of language in humans. Language Sciences, 2014, 46, 220-231.	1.0	6
35	The Tissue-Specific RNA Binding Protein T-STAR Controls Regional Splicing Patterns of Neurexin Pre-mRNAs in the Brain. PLoS Genetics, 2013, 9, e1003474.	3.5	74
36	Cerebral cortical development in rodents and primates. Progress in Brain Research, 2012, 195, 45-70.	1.4	107

3

#	Article	IF	CITATIONS
37	In Vitro Modelling of Cortical Neurogenesis by Sequential Induction of Human Umbilical Cord Blood Stem Cells. Stem Cell Reviews and Reports, 2012, 8, 210-223.	5.6	12
38	Could autologous cord blood stem cell transplantation treat cerebral palsy?. Translational Neuroscience, 2011, 2, 207-218.	1.4	4
39	The Corticofugal Neuron-Associated Genes ROBO1, SRGAP1, and CTIP2 Exhibit an Anterior to Posterior Gradient of Expression in Early Fetal Human Neocortex Development. Cerebral Cortex, 2011, 21, 1395-1407.	2.9	47
40	Plasticity to neonatal sensorimotor cortex injury. Translational Neuroscience, 2010, 1, 16-23.	1.4	3
41	Transplantation of magnetically labeled mesenchymal stem cells in a model of perinatal brain injury. Stem Cell Research, 2010, 5, 255-266.	0.7	58
42	Developmental plasticity connects visual cortex to motoneurons after stroke. Annals of Neurology, 2010, 67, 132-136.	5.3	24
43	Response to Dr Papathanasiou. Annals of Neurology, 2010, 68, 118-119.	5.3	0
44	Investigating gradients of gene expression involved in early human cortical development. Journal of Anatomy, 2010, 217, 300-311.	1.5	55
45	Subplate in the developing cortex of mouse and human. Journal of Anatomy, 2010, 217, 368-380.	1.5	78
46	Renewed focus on the developing human neocortex. Journal of Anatomy, 2010, 217, 276-288.	1,5	120
47	Development of the human neocortex. Journal of Anatomy, 2010, 217, 275-275.	1.5	0
48	Elimination of muscle afferent boutons from the cuneate nucleus of the rat medulla during development. Neuroscience, 2009, 161, 787-793.	2.3	5
49	Progressive loss of PAX6, TBR2, NEUROD and TBR1 mRNA gradients correlates with translocation of EMX2 to the cortical plate during human cortical development. European Journal of Neuroscience, 2008, 28, 1449-1456.	2.6	69
50	A comparison of behavioural and histological outcomes of periventricular injection of ibotenic acid in neonatal rats at postnatal days 5 and 7. Brain Research, 2008, 1201, 187-195.	2.2	12
51	A Molecular Neuroanatomical Study of the Developing Human Neocortex from 8 to 17 Postconceptional Weeks Revealing the Early Differentiation of the Subplate and Subventricular Zone. Cerebral Cortex, 2008, 18, 1536-1548.	2.9	190
52	Is hemiplegic cerebral palsy equivalent to amblyopia of the corticospinal system?. Annals of Neurology, 2007, 62, 493-503.	5.3	235
53	The dependence of spinal cord development on corticospinal input and its significance in understanding and treating spastic cerebral palsy. Neuroscience and Biobehavioral Reviews, 2007, 31, 1114-1124.	6.1	62
54	The effects of botulinum neurotoxin A induced muscle paresis during a critical period upon muscle and spinal cord development in the rat. Experimental Neurology, 2006, 202, 456-469.	4.1	14

#	Article	IF	CITATIONS
55	Recovery of Function After Spinal Cord Injury. , 2006, , 24-51.		0
56	An immunohistochemical study of the development of sensorimotor components of the early fetal human spinal cord. Journal of Anatomy, 2005, 207, 313-324.	1.5	25
57	Spinal cord plasticity in response to unilateral inhibition of the rat motor cortex during development: changes to gene expression, muscle afferents and the ipsilateral corticospinal projection. European Journal of Neuroscience, 2004, 20, 2555-2566.	2.6	30
58	Brainstem motor nuclei respond differentially to degenerative disease in the mutant mouse wobbler. Neuropathology and Applied Neurobiology, 2004, 30, 148-160.	3.2	3
59	The effect on motor cortical neuronal development of focal lesions to the subâ€cortical white matter in the neonatal rat: a model for periventricular leukomalacia. International Journal of Developmental Neuroscience, 2003, 21, 171-182.	1.6	12
60	N-Methyl-d-Aspartate Receptor Blockade during Development Induces Short-Term but Not Long-Term Changes in c-Jun and Parvalbumin Expression in the Rat Cervical Spinal Cord. Experimental Neurology, 2001, 170, 380-384.	4.1	7
61	Reciprocal and Renshaw (recurrent) inhibition are functional in man at birth. Brain Research, 2001, 899, 66-81.	2.2	19
62	Abnormal corticospinal function but normal axonal guidance in human L1CAM mutations. Brain, 2001, 124, 2393-2406.	7.6	29
63	Changing pattern of expression of parvalbumin immunoreactivity during human fetal spinal cord development. Journal of Comparative Neurology, 2000, 423, 727-735.	1.6	13
64	The successful use of fentanyl/fluanisone ('Hypnorm') as an anaesthetic for intracranial surgery in neonatal rats. Laboratory Animals, 2000, 34, 260-264.	1.0	26
65	Plasticity in the Rat Spinal Cord Seen in Response to Lesions to the Motor Cortex during Development but Not to Lesions in Maturity. Experimental Neurology, 2000, 166, 422-434.	4.1	41
66	Changing pattern of expression of parvalbumin immunoreactivity during human fetal spinal cord development. Journal of Comparative Neurology, 2000, 423, 727-735.	1.6	1
67	Gephyrin-Like Immunoreactivity Is a Marker for Growing Axons in the Central Nervous System of the Immature Rat. Developmental Neuroscience, 1999, 21, 50-57.	2.0	4
68	Transient expression of calcitonin gene-related peptide immunoreactivity in the ventral horn of the post-natal rat cervical spinal cord. Developmental Brain Research, 1999, 115, 93-96.	1.7	3
69	The Effect of a Peripheral Nerve Lesion on Calbindin D28k Immunoreactivity in the Cervical Ventral Horn of Developing and Adult Rats. Experimental Neurology, 1999, 156, 111-120.	4.1	19
70	Developmental expression of parvalbumin by rat lower cervical spinal cord neurones and the effect of early lesions to the motor cortex. Developmental Brain Research, 1997, 102, 197-208.	1.7	26
71	Expression of nitric oxide synthase by motor neurones in the spinal cord of the mutant mouse wobbler. Neuroscience Letters, 1996, 215, 177-180.	2.1	24
72	The Effects of an RNA Synthesis Inhibitor on the Survival and Regeneration of Rat Motoneurones Injured at Birth. Experimental Neurology, 1996, 5, 65-71.	1.7	1

#	Article	IF	CITATIONS
73	Changes in Retrogradely Labelled Neurones in the Red Nucleus and Cortex after Depletion of Motoneurones by Axotomy in Neonatal Rats. Developmental Neuroscience, 1994, 16, 34-37.	2.0	3
74	Expression of cholinergic phenotype by embryonic ventral horn neurons transplanted into the spinal cord in the rat. Restorative Neurology and Neuroscience, 1994, 6, 209-219.	0.7	2
75	Axotomy induces NADPH diaphorase activity in neonatal but not adult motoneurones. NeuroReport, 1993, 5, 361-364.	1.2	69
76	Observations on the development of transplanted embryonic ventral horn neurones grafted into adult rat spinal cord and connected to skeletal muscle implants via a peripheral nerve. Experimental Brain Research, 1992, 91, 249-58.	1.5	23
77	Transplants of embryonic motoneurones to adult spinal cord: survival and innervation abilities. Trends in Neurosciences, 1991, 14, 355-357.	8.6	31
78	Grafts of embryonic tissue into spinal cord: A possible strategy for treating neuromuscular disorders. Neuromuscular Disorders, 1991, 1, 87-92.	0.6	8
79	Embryonic motoneurones grafted into the spinal cord of an adult rat can innervate a muscle. Restorative Neurology and Neuroscience, 1991, 2, 299-302.	0.7	4