Yuge Niu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5501433/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fabrication, characterization and antimicrobial activities of thymol-loaded zein nanoparticles stabilized by sodium caseinate–chitosan hydrochloride double layers. Food Chemistry, 2014, 142, 269-275.	4.2	251
2	Structure characterization and hypoglycemic activity of a polysaccharide isolated from the fruit of Lycium barbarum L Carbohydrate Polymers, 2010, 80, 1161-1167.	5.1	120
3	Phenolic composition and nutraceutical properties of organic and conventional cinnamon and peppermint. Food Chemistry, 2012, 132, 1442-1450.	4.2	97
4	A Novel Alkali Extractable Polysaccharide from <i>Plantago asiatic</i> L. Seeds and Its Radical-Scavenging and Bile Acid-Binding Activities. Journal of Agricultural and Food Chemistry, 2015, 63, 569-577.	2.4	82
5	Modified soluble dietary fiber from black bean coats with its rheological and bile acid binding properties. Food Hydrocolloids, 2017, 62, 94-101.	5.6	79
6	Physicochemical properties of dietary fibers extracted from gluten-free sources: quinoa () Tj ETQq0 0 0 rgBT /Ove Hydrocolloids, 2018, 85, 321-330.	rlock 10 T 5.6	f 50 547 Td 77
7	Characterization of enzymatic modified soluble dietary fiber from tomato peels with high release of lycopene. Food Hydrocolloids, 2020, 99, 105321.	5.6	75
8	Structural analysis and bioactivity of a polysaccharide from the roots of Astragalus membranaceus (Fisch) Bge. var. mongolicus (Bge.) Hsiao. Food Chemistry, 2011, 128, 620-626.	4.2	71
9	Comparisons of three modifications on structural, rheological and functional properties of soluble dietary fibers from tomato peels. LWT - Food Science and Technology, 2018, 88, 56-63.	2.5	71
10	Characterization of a Novel Polysaccharide from Tetraploid Gynostemma pentaphyllum Makino. Journal of Agricultural and Food Chemistry, 2013, 61, 4882-4889.	2.4	67
11	Enzymatic, enzymatic-ultrasonic and alkaline extraction of soluble dietary fibre from flaxseed – A physicochemical approach. Food Hydrocolloids, 2019, 90, 105-112.	5.6	62
12	Structural, rheological and functional properties of modified soluble dietary fiber from tomato peels. Food Hydrocolloids, 2018, 77, 557-565.	5.6	58
13	Phytochemical compositions, and antioxidant properties, and antiproliferative activities of wheat flour. Food Chemistry, 2012, 135, 325-331.	4.2	54
14	Identification and Quantification of Phytochemical Composition and Anti-inflammatory, Cellular Antioxidant, and Radical Scavenging Activities of 12 Plantago Species. Journal of Agricultural and Food Chemistry, 2013, 61, 6693-6702.	2.4	52
15	Gelling and bile acid binding properties of gelatin-alginate gels with interpenetrating polymer networks by double cross-linking. Food Chemistry, 2019, 270, 223-228.	4.2	45
16	Effect of genotype, environment, and their interaction on phytochemical compositions and antioxidant properties of soft winter wheat flour. Food Chemistry, 2013, 138, 454-462.	4.2	41
17	Partial Least-Squares-Discriminant Analysis Differentiating Chinese Wolfberries by UPLC–MS and Flow Injection Mass Spectrometric (FIMS) Fingerprints. Journal of Agricultural and Food Chemistry, 2014, 62, 9073-9080.	2.4	38
18	Characterization of a Novel Alkali-Soluble Heteropolysaccharide from Tetraploid <i>Gynostemma pentaphyllum</i> Makino and Its Potential Anti-inflammatory and Antioxidant Properties. Journal of Agricultural and Food Chemistry, 2014, 62, 3783-3790.	2.4	37

Yuge Niu

#	Article	IF	CITATIONS
19	Characterization of lipopolysaccharide-stimulated cytokine expression in macrophages and monocytes. Inflammation Research, 2012, 61, 1329-1338.	1.6	36
20	Formation of 3-MCPD Fatty Acid Esters from Monostearoyl Glycerol and the Thermal Stability of 3-MCPD Monoesters. Journal of Agricultural and Food Chemistry, 2016, 64, 8918-8926.	2.4	32
21	Simultaneous HPLC quantification of five major triterpene alcohol and sterol ferulates in rice bran oil using a single reference standard. Food Chemistry, 2014, 148, 329-334.	4.2	31
22	Effects of Structural Modifications on Physicochemical and Bile Acid-Binding Properties of Psyllium. Journal of Agricultural and Food Chemistry, 2013, 61, 596-601.	2.4	30
23	Interpenetrating network gels composed of gelatin and soluble dietary fibers from tomato peels. Food Hydrocolloids, 2019, 89, 95-99.	5.6	30
24	Characterization of a heteropolysaccharide isolated from diploid Gynostemma pentaphyllum Makino. Carbohydrate Polymers, 2013, 92, 2111-2117.	5.1	27
25	Novel composite gels of gelatin and soluble dietary fiber from black bean coats with interpenetrating polymer networks. Food Hydrocolloids, 2018, 83, 72-78.	5.6	27
26	Polysaccharides-protein interaction of psyllium and whey protein with their texture and bile acid binding activity. International Journal of Biological Macromolecules, 2019, 126, 215-220.	3.6	25
27	Production, structure and morphology of exopolysaccharides yielded by submerged fermentation of Antrodia cinnamomea. Carbohydrate Polymers, 2019, 205, 271-278.	5.1	25
28	Novel double cross-linked gels of soybean protein isolates and soluble dietary fiber from soybean coats with their functionalities. Food Hydrocolloids, 2021, 113, 106474.	5.6	25
29	Cationic β-lactoglobulin nanoparticles as a bioavailability enhancer: Comparison between ethylenediamine and polyethyleneimine as cationizers. Food Chemistry, 2014, 159, 333-342.	4.2	21
30	A novel fat replacer composed by gelatin and soluble dietary fibers from black bean coats with its application in meatballs. LWT - Food Science and Technology, 2020, 122, 109000.	2.5	19
31	Genotype, environment, and their interactions on the phytochemical compositions and radical scavenging properties of soft winter wheat bran. LWT - Food Science and Technology, 2015, 60, 277-283.	2.5	18
32	Preparation of succinylated derivatives of psyllium and their physicochemical and bile acid-binding properties. Food Chemistry, 2012, 132, 1025-1032.	4.2	16
33	The structural and functional characteristics of soluble dietary fibers modified from tomato pomace with increased content of lycopene. Food Chemistry, 2022, 382, 132333.	4.2	15
34	A new heteropolysaccharide from the seed husks of <i>Plantago asiatica</i> L. with its thermal and antioxidant properties. Food and Function, 2017, 8, 4611-4618.	2.1	11
35	Immunomodulation activity of alkali extract polysaccharide from Plantago asiatic L. seeds. RSC Advances, 2016, 6, 76312-76317.	1.7	10
36	Inhibition Mechanism of L-Cysteine on Maillard Reaction by Trapping 5-Hydroxymethylfurfural. Foods, 2021, 10, 1391.	1.9	10

Yuge Niu

#	Article	IF	CITATIONS
37	Separating four diastereomeric pairs of dihydroflavonol glycosides from Engelhardia roxburghiana using high performance counter-current chromatography. Journal of Chromatography A, 2015, 1383, 79-87.	1.8	8
38	Liposome-like nanocapsules of dual drug-tailed betaine for cancer therapy. International Journal of Pharmaceutics, 2015, 493, 460-465.	2.6	8
39	Fatty Acid and Phytochemical Compositions of <i>Plantago</i> Seed Oils and Their Functionalities. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 905-912.	0.8	4