List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5501391/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Norovirus and Histo-Blood Group Antigens: Demonstration of a Wide Spectrum of Strain Specificities and Classification of Two Major Binding Groups among Multiple Binding Patterns. Journal of Virology, 2005, 79, 6714-6722.	3.4	366
2	Structural Basis for the Recognition of Blood Group Trisaccharides by Norovirus. Journal of Virology, 2007, 81, 5949-5957.	3.4	332
3	Norovirus and its histo-blood group antigen receptors: an answer to a historical puzzle. Trends in Microbiology, 2005, 13, 285-293.	7.7	280
4	Spike Protein VP8* of Human Rotavirus Recognizes Histo-Blood Group Antigens in a Type-Specific Manner. Journal of Virology, 2012, 86, 4833-4843.	3.4	221
5	The P Domain of Norovirus Capsid Protein Forms Dimer and Binds to Histo-Blood Group Antigen Receptors. Journal of Virology, 2004, 78, 6233-6242.	3.4	202
6	The P Domain of Norovirus Capsid Protein Forms a Subviral Particle That Binds to Histo-Blood Group Antigen Receptors. Journal of Virology, 2005, 79, 14017-14030.	3.4	188
7	Norovirus Gastroenteritis, Carbohydrate Receptors, and Animal Models. PLoS Pathogens, 2010, 6, e1000983.	4.7	172
8	Mutations within the P2 Domain of Norovirus Capsid Affect Binding to Human Histo-Blood Group Antigens: Evidence for a Binding Pocket. Journal of Virology, 2003, 77, 12562-12571.	3.4	171
9	Rotavirus VP8*: Phylogeny, Host Range, and Interaction with Histo-Blood Group Antigens. Journal of Virology, 2012, 86, 9899-9910.	3.4	152
10	Structural Basis for the Receptor Binding Specificity of Norwalk Virus. Journal of Virology, 2008, 82, 5340-5347.	3.4	145
11	Norovirus–host interaction: Multi-selections by human histo-blood group antigens. Trends in Microbiology, 2011, 19, 382-388.	7.7	143
12	Noroviral P particle: Structure, function and applications in virus–host interaction. Virology, 2008, 382, 115-123.	2.4	137
13	Norovirus P Particle, a Novel Platform for Vaccine Development and Antibody Production. Journal of Virology, 2011, 85, 753-764.	3.4	135
14	Histo-blood group antigens: a common niche for norovirus and rotavirus. Expert Reviews in Molecular Medicine, 2014, 16, e5.	3.9	133
15	Outbreak studies of a GIIâ€3 and a GIIâ€4 norovirus revealed an association between HBGA phenotypes and viral infection. Journal of Medical Virology, 2008, 80, 1296-1301.	5.0	115
16	Conservation of Carbohydrate Binding Interfaces — Evidence of Human HBGA Selection in Norovirus Evolution. PLoS ONE, 2009, 4, e5058.	2.5	103
17	Norovirus–host interaction: implications for disease control and prevention. Expert Reviews in Molecular Medicine, 2007, 9, 1-22.	3.9	98
18	Crystallography of a Lewis-Binding Norovirus, Elucidation of Strain-Specificity to the Polymorphic Human Histo-Blood Group Antigens. PLoS Pathogens, 2011, 7, e1002152.	4.7	97

#	Article	IF	CITATIONS
19	Human Milk Contains Elements That Block Binding of Noroviruses to Human Histo–Blood Group Antigens in Saliva. Journal of Infectious Diseases, 2004, 190, 1850-1859.	4.0	84
20	Norovirus P particle: a subviral nanoparticle for vaccine development against norovirus, rotavirus and influenza virus. Nanomedicine, 2012, 7, 889-897.	3.3	72
21	Elucidation of strain-specific interaction of a GII-4 norovirus with HBGA receptors by site-directed mutagenesis study. Virology, 2008, 379, 324-334.	2.4	71
22	E. coli-expressed recombinant norovirus capsid proteins maintain authentic antigenicity and receptor binding capability. Journal of Medical Virology, 2004, 74, 641-649.	5.0	69
23	An outbreak caused by GII.17 norovirus with a wide spectrum of HBGA-associated susceptibility. Scientific Reports, 2015, 5, 17687.	3.3	64
24	Histo-blood group antigens as receptors for rotavirus, new understanding on rotavirus epidemiology and vaccine strategy. Emerging Microbes and Infections, 2017, 6, 1-8.	6.5	64
25	Genetic and Phenotypic Characterization of GII-4 Noroviruses That Circulated during 1987 to 2008. Journal of Virology, 2010, 84, 9595-9607.	3.4	61
26	Norovirus P Particle Efficiently Elicits Innate, Humoral and Cellular Immunity. PLoS ONE, 2013, 8, e63269.	2.5	60
27	Emergence of the GII4/2006b variant and recombinant noroviruses in China. Journal of Medical Virology, 2008, 80, 1997-2004.	5.0	59
28	A candidate dual vaccine against influenza and noroviruses. Vaccine, 2011, 29, 7670-7677.	3.8	57
29	C-Terminal Arginine Cluster Is Essential for Receptor Binding of Norovirus Capsid Protein. Journal of Virology, 2006, 80, 7322-7331.	3.4	56
30	Gangliosides are Ligands for Human Noroviruses. Journal of the American Chemical Society, 2014, 136, 12631-12637.	13.7	56
31	Terminal modifications of norovirus P domain resulted in a new type of subviral particles, the small P particles. Virology, 2011, 410, 345-352.	2.4	53
32	Poly-LacNAc as an Age-Specific Ligand for Rotavirus P[11] in Neonates and Infants. PLoS ONE, 2013, 8, e78113.	2.5	53
33	Tannic acid inhibited norovirus binding to HBGA receptors, a study of 50 Chinese medicinal herbs. Bioorganic and Medicinal Chemistry, 2012, 20, 1616-1623.	3.0	52
34	Median infectious dose of human norovirus GII.4 in gnotobiotic pigs is decreased by simvastatin treatment and increased by age. Journal of General Virology, 2013, 94, 2005-2016.	2.9	51
35	Structure, stability and dynamics of norovirus P domain derived protein complexes studied by native mass spectrometry. Journal of Structural Biology, 2012, 177, 273-282.	2.8	48
36	Intranasal P Particle Vaccine Provided Partial Cross-Variant Protection against Human GII.4 Norovirus Diarrhea in Gnotobiotic Pigs. Journal of Virology, 2014, 88, 9728-9743.	3.4	47

#	Article	IF	CITATIONS
37	Glycan Specificity of P[19] Rotavirus and Comparison with Those of Related P Genotypes. Journal of Virology, 2016, 90, 9983-9996.	3.4	46
38	Characterization of the new GII.17 norovirus variant that emerged recently as the predominant strain in China. Journal of General Virology, 2016, 97, 2620-2632.	2.9	44
39	Tulane Virus Recognizes the A Type 3 and B Histo-Blood Group Antigens. Journal of Virology, 2015, 89, 1419-1427.	3.4	43
40	Genetic Analysis of Reemerging GII.P16-GII.2 Noroviruses in 2016–2017 in China. Journal of Infectious Diseases, 2018, 218, 133-143.	4.0	43
41	A Unique Human Norovirus Lineage with a Distinct HBGA Binding Interface. PLoS Pathogens, 2015, 11, e1005025.	4.7	42
42	Human intestinal organoids express histo-blood group antigens, bind norovirus VLPs, and support limited norovirus replication. Scientific Reports, 2017, 7, 12621.	3.3	42
43	Polyvalent complexes for vaccine development. Biomaterials, 2013, 34, 4480-4492.	11.4	39
44	Inhibition of Histo-blood Group Antigen Binding as a Novel Strategy to Block Norovirus Infections. PLoS ONE, 2013, 8, e69379.	2.5	39
45	Structural basis of glycan specificity of P[19] VP8*: Implications for rotavirus zoonosis and evolution. PLoS Pathogens, 2017, 13, e1006707.	4.7	38
46	P[8] and P[4] Rotavirus Infection Associated with Secretor Phenotypes Among Children in South China. Scientific Reports, 2016, 6, 34591.	3.3	37
47	A dual chicken IgY against rotavirus and norovirus. Antiviral Research, 2013, 97, 293-300.	4.1	35
48	A dual vaccine candidate against norovirus and hepatitis E virus. Vaccine, 2014, 32, 445-452.	3.8	35
49	Subviral particle as vaccine and vaccine platform. Current Opinion in Virology, 2014, 6, 24-33.	5.4	35
50	Affinities of recombinant norovirus P dimers for human blood group antigens. Glycobiology, 2013, 23, 276-285.	2.5	34
51	Tulane virus recognizes sialic acids as cellular receptors. Scientific Reports, 2015, 5, 11784.	3.3	33
52	Evaluation of anti-norovirus IgY from egg yolk of chickens immunized with norovirus P particles. Journal of Virological Methods, 2012, 186, 126-131.	2.1	32
53	A trivalent vaccine candidate against hepatitis E virus, norovirus, and astrovirus. Vaccine, 2016, 34, 905-913.	3.8	32
54	Recent advancements in combination subunit vaccine development. Human Vaccines and Immunotherapeutics, 2017, 13, 180-185.	3.3	32

#	Article	IF	CITATIONS
55	Norovirus Vaccines: Current Clinical Development and Challenges. Pathogens, 2021, 10, 1641.	2.8	32
56	Cryo-EM Structure of a Novel Calicivirus, Tulane Virus. PLoS ONE, 2013, 8, e59817.	2.5	28
57	Bioengineered Norovirus S ₆₀ Nanoparticles as a Multifunctional Vaccine Platform. ACS Nano, 2018, 12, 10665-10682.	14.6	28
58	Vaccine against norovirus. Human Vaccines and Immunotherapeutics, 2014, 10, 1449-1456.	3.3	27
59	Molecular basis of P[II] major human rotavirus VP8* domain recognition of histo-blood group antigens. PLoS Pathogens, 2020, 16, e1008386.	4.7	25
60	Two Gastroenteritis Outbreaks Caused by GII Noroviruses: Host Susceptibility and HBGA Phenotypes. PLoS ONE, 2013, 8, e58605.	2.5	24
61	Association of Histo–Blood Group Antigens with Susceptibility to Norovirus Infection May Be Strainâ€5pecific Rather than Genogroup Dependent. Journal of Infectious Diseases, 2008, 198, 940-941.	4.0	23
62	Norovirus P Particle as a Platform for Antigen Presentation. Procedia in Vaccinology, 2011, 4, 19-26.	0.4	23
63	Affinities of human histo-blood group antigens for norovirus capsid protein complexes. Glycobiology, 2015, 25, 170-180.	2.5	23
64	Development and evaluation of two subunit vaccine candidates containing antigens of hepatitis E virus, rotavirus, and astrovirus. Scientific Reports, 2016, 6, 25735.	3.3	23
65	Identifying Carbohydrate Ligands of a Norovirus P Particle using a Catch and Release Electrospray Ionization Mass Spectrometry Assay. Journal of the American Society for Mass Spectrometry, 2014, 25, 111-119.	2.8	22
66	Norovirus Capsid Protein-Derived Nanoparticles and Polymers as Versatile Platforms for Antigen Presentation and Vaccine Development. Pharmaceutics, 2019, 11, 472.	4.5	22
67	Human Group C Rotavirus VP8*s Recognize Type A Histo-Blood Group Antigens as Ligands. Journal of Virology, 2018, 92, .	3.4	21
68	Characterization of Antigenic Relatedness between GII.4 and GII.17 Noroviruses by Use of Serum Samples from Norovirus-Infected Patients. Journal of Clinical Microbiology, 2017, 55, 3366-3373.	3.9	19
69	Structural Basis of Glycan Recognition in Globally Predominant Human P[8] Rotavirus. Virologica Sinica, 2020, 35, 156-170.	3.0	19
70	Branched-linear and agglomerate protein polymers as vaccine platforms. Biomaterials, 2014, 35, 8427-8438.	11.4	18
71	Immune response and protective efficacy of the S particle presented rotavirus VP8* vaccine in mice. Vaccine, 2019, 37, 4103-4110.	3.8	18
72	Strain-specific interaction of a GII.10 Norovirus with HBGAs. Virology, 2015, 476, 386-394.	2.4	17

#	Article	IF	CITATIONS
73	Norovirus GII.17 Natural Infections in Rhesus Monkeys, China. Emerging Infectious Diseases, 2017, 23, 316-319.	4.3	16
74	Parenterally Administered P24-VP8* Nanoparticle Vaccine Conferred Strong Protection against Rotavirus Diarrhea and Virus Shedding in Gnotobiotic Pigs. Vaccines, 2019, 7, 177.	4.4	16
75	Structural Adaptations of Norovirus Gll.17/13/21 Lineage through Two Distinct Evolutionary Paths. Journal of Virology, 2019, 93, .	3.4	16
76	Norovirus gastroenteritis, increased understanding and future antiviral options. Current Opinion in Investigational Drugs, 2008, 9, 146-51.	2.3	16
77	Crystal structures of GI.8 Boxer virusÂP dimers in complex with HBGAs, a novel evolutionary path selected by the Lewis epitope. Protein and Cell, 2015, 6, 101-116.	11.0	15
78	Effects of rotavirus NSP4 protein on the immune response and protection of the SR69A-VP8* nanoparticle rotavirus vaccine. Vaccine, 2021, 39, 263-271.	3.8	15
79	Antigenic Relatedness of Norovirus GII.4 Variants Determined by Human Challenge Sera. PLoS ONE, 2015, 10, e0124945.	2.5	15
80	Genetic diversity of noroviruses in Chinese adults: Potential recombination hotspots and GII-4/Den Haag-specific mutations at a putative epitope. Infection, Genetics and Evolution, 2011, 11, 1716-1726.	2.3	14
81	Quantifying the binding stoichiometry and affinity of histo-blood group antigen oligosaccharides for human noroviruses. Glycobiology, 2018, 28, 488-498.	2.5	14
82	A Nanoparticle-Based Trivalent Vaccine Targeting the Glycan Binding VP8* Domains of Rotaviruses. Viruses, 2021, 13, 72.	3.3	12
83	The formation of P particle increased immunogenicity of norovirus P protein. Immunology, 2012, 136, 28-29.	4.4	10
84	Structural basis of P[II] rotavirus evolution and host ranges under selection of histo-blood group antigens. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
85	Saliva as a source of reagent to study human susceptibility to avian influenza H7N9 virus infection. Emerging Microbes and Infections, 2018, 7, 1-10.	6.5	8
86	Gll.13/21 Noroviruses Recognize Glycans with a Terminal β-Galactose via an Unconventional Glycan Binding Site. Journal of Virology, 2019, 93, .	3.4	8
87	Genetic susceptibility to rotavirus infection in Chinese children: a population-based case–control study. Human Vaccines and Immunotherapeutics, 2021, 17, 1803-1810.	3.3	7
88	Intra-species sialic acid polymorphism in humans: a common niche for influenza and coronavirus pandemics?. Emerging Microbes and Infections, 2021, 10, 1191-1199.	6.5	7
89	Prevalence and Evolution of Noroviruses between 1966 and 2019, Implications for Vaccine Design. Pathogens, 2021, 10, 1012.	2.8	6
90	Structural basis of host ligand specificity change of GII porcine noroviruses from their closely related GII human noroviruses. Emerging Microbes and Infections, 2019, 8, 1642-1657.	6.5	5

#	Article	IF	CITATIONS
91	Histo-blood group antigens as divergent factors of groups A and C rotaviruses circulating in humans and different animal species. Emerging Microbes and Infections, 2020, 9, 1609-1617.	6.5	5
92	Bioengineered pseudovirus nanoparticles displaying the HA1 antigens of influenza viruses for enhanced immunogenicity. Nano Research, 2022, 15, 4181-4190.	10.4	5
93	Complete Genome Sequence of a GII.17 Norovirus Isolated from a Rhesus Monkey in China. Genome Announcements, 2016, 4, .	0.8	3
94	Comparison of the efficacy of a commercial inactivated influenza A/H1N1/pdm09 virus (pH1N1) vaccine and two experimental M2e-based vaccines against pH1N1 challenge in the growing pig model. PLoS ONE, 2018, 13, e0191739.	2.5	3
95	Epidemiology and HBGA-susceptibility investigation of a G9P[8] rotavirus outbreak in a school in Lechang, China. Archives of Virology, 2020, 165, 1311-1320.	2.1	3
96	Molecular Pathogenesis of Human Norovirus. , 2009, , 575-600.		3
97	Characterization of Functional Components in Bovine Colostrum That Inhibit Norovirus Capsid Protruding Domains Interacting with HBGA Ligands. Pathogens, 2021, 10, 857.	2.8	2
98	Quantitative norovirus viral load is not affected by home storage of stool. Transplant Infectious Disease, 2022, 24, .	1.7	2
99	Norovirus Gastroenteritis. , 0, , 39-52.		0
100	Title is missing!. , 2020, 16, e1008386.		0
101	Title is missing!. , 2020, 16, e1008386.		0
102	Title is missing!. , 2020, 16, e1008386.		0
103	Title is missing!. , 2020, 16, e1008386.		0
104	Bovine natural antibody <scp>IgM</scp> inhibits the binding of human norovirus protruding domain to its <scp>HBGA</scp> receptors. FEBS Open Bio, 0, , .	2.3	0
105	Structural Insight into Terminal Galactose Recognition by Two Non-HBGA Binding GI.3 Noroviruses. Journal of Virology, 0, , .	3.4	0