Carlos A Villalba-Galea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5501349/publications.pdf

Version: 2024-02-01

46 papers

1,129 citations

430874 18 h-index 25 g-index

49 all docs

49 docs citations

49 times ranked 1087 citing authors

#	Article	IF	CITATIONS
1	Modulation of KV7 Channel Deactivation by PI(4,5)P2. Frontiers in Pharmacology, 2020, 11, 895.	3.5	2
2	Optical control of muscular nicotinic channels with azocuroniums, photoswitchable azobenzenes bearing two N-methyl-N-carbocyclic quaternary ammonium groups. European Journal of Medicinal Chemistry, 2020, 200, 112403.	5.5	6
3	Hysteretic Behavior in Voltage-Gated Channels. Frontiers in Pharmacology, 2020, 11, 579596.	3.5	25
4	C-Type Inactivation in KV2.1 Channels. Biophysical Journal, 2019, 116, 15a.	0.5	0
5	Structure-Activity Relationship of Potent Photo-Switchable Neuromuscular Inhibitors. Biophysical Journal, 2019, 116, 395a.	0.5	O
6	Regulation of Kv2.1 channel inactivation by phosphatidylinositol 4,5-bisphosphate. Scientific Reports, 2018, 8, 1769.	3.3	18
7	Modulation of KV7.1 by NaVβ1 Subunit. Biophysical Journal, 2018, 114, 122a.	0.5	O
8	A <i>Xenopus</i> oocyte model system to study action potentials. Journal of General Physiology, 2018, 150, 1583-1593.	1.9	12
9	Functional Characterization of Novel Photo-Switchable Neuromuscular Blockers. Biophysical Journal, 2018, 114, 297a.	0.5	O
10	Pi(4,5)P 2 Modulates Hysteresis and Pharmacology of K V 7 Channels. Biophysical Journal, 2017, 112, 110a.	0.5	0
11	Hysteresis in voltage-gated channels. Channels, 2017, 11, 140-155.	2.8	36
12	Retigabine holds KV7 channels open and stabilizes the resting potential. Journal of General Physiology, 2016, 147, 229-241.	1.9	23
13	Development of a Model for Excitability Studies using Xenopus Oocytes. Biophysical Journal, 2015, 108, 281a.	0.5	O
14	Editorial: Phosphoinositides and their phosphatases: Linking electrical and chemical signals in biological processes. Frontiers in Pharmacology, 2015, 6, 142.	3.5	0
15	Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain. Nature Structural and Molecular Biology, 2014, 21, 244-252.	8.2	228
16	Hv1 Proton Channel Opening Is Preceded by a Voltage-independent Transition. Biophysical Journal, 2014, 107, 1564-1572.	0.5	40
17	Ph Sensitivity of Voltage Sensing Domain Relaxation. Biophysical Journal, 2014, 106, 745a-746a.	0.5	O
18	S3-S4 Linker Length Modulates the Relaxed State of a Voltage-Gated Potassium Channel. Biophysical Journal, 2013, 105, 2312-2322.	0.5	30

#	Article	IF	Citations
19	S3-S4 Loop Modulates Voltage Sensing Domain Relaxation. Biophysical Journal, 2013, 104, 466a-467a.	0.5	O
20	Voltage Sensing in Hv1 Proton Channels. Biophysical Journal, 2013, 104, 207a.	0.5	0
21	Voltage Sensor Trapping in the Relaxed State. Biophysical Journal, 2013, 104, 196a.	0.5	O
22	The gating charge should not be estimated by fitting a two-state model to a <i>Q-V</i> curve. Journal of General Physiology, 2013, 142, 575-578.	1.9	39
23	Sensing charges of the <i>Ciona intestinalis</i> voltage-sensing phosphatase. Journal of General Physiology, 2013, 142, 543-555.	1.9	40
24	I _{Ks} channels open slowly because KCNE1 accessory subunits slow the movement of S4 voltage sensors in KCNQ1 pore-forming subunits. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E559-66.	7.1	54
25	A human phospholipid phosphatase activated by a transmembrane control module. Journal of Lipid Research, 2012, 53, 2266-2274.	4.2	22
26	Molecular mechanism for depolarization-induced modulation of Kv channel closure. Journal of General Physiology, 2012, 140, 481-493.	1.9	39
27	Structural Dynamics in the Resting and Activated States of the Voltage Sensor of Ci-VSP from Dipolar Distance Measurements. Biophysical Journal, 2012, 102, 685a.	0.5	O
28	Reducing S3-S4 Linker Length in Shaker K+ Channels Stabilizes the Relaxed State. Biophysical Journal, 2012, 102, 530a.	0.5	0
29	The Resting and Activated Conformations of the Voltage Sensor of Ci-VSP from Functional and Solvent Accessibility Determinations. Biophysical Journal, 2012, 102, 36a.	0.5	О
30	Control of Hv1 Voltage-Gated Proton Channel Opening by Changes in the Transmembrane Voltage and pH Gradients. Biophysical Journal, 2012, 102, 36a.	0.5	0
31	Voltage-Controlled Enzymes: The New JanusBifrons. Frontiers in Pharmacology, 2012, 3, 161.	3.5	20
32	New insights in the activity of voltage sensitive phosphatases. Cellular Signalling, 2012, 24, 1541-1547.	3.6	15
33	Dynamic Modulation of Voltage-Dependent Kv7.2-7.3 Channel Opening by Voltage-Sensor Relaxation. Biophysical Journal, 2011, 100, 428a.	0.5	O
34	Gate Closure Strictly Follows Voltage-Sensor Movements in KV Channels. Biophysical Journal, 2011, 100, 580a-581a.	0.5	0
35	Controlling the Activity of a Phosphatase and Tensin Homolog (PTEN) by Membrane Potential. Journal of Biological Chemistry, 2011, 286, 17945-17953.	3.4	38
36	Sensing Charges of Ci-VSP. Biophysical Journal, 2010, 98, 313a.	0.5	0

#	Article	IF	CITATIONS
37	Stabilization of the Relaxed State of the Voltage Sensing Domain of Shaker. Biophysical Journal, 2010, 98, 521a.	0.5	0
38	Structural Model of the Voltage Sensing Domain in Ci-VSP. Biophysical Journal, 2010, 98, 645a.	0.5	0
39	Modular Nature of the Main Domains in Voltage Sensitive Phosphatases. Biophysical Journal, 2010, 98, 313a.	0.5	O
40	Coupling between the voltage-sensing and phosphatase domains of Ci-VSP. Journal of General Physiology, 2009, 134, 5-14.	1.9	63
41	Charge Movement of a Voltage-Sensitive Fluorescent Protein. Biophysical Journal, 2009, 96, L19-L21.	0.5	59
42	Uncoupling Of The Phosphatase Produces A Deeper Relaxation Of Ci-VSP. Biophysical Journal, 2009, 96, 370a.	0.5	0
43	S4-based voltage sensors have three major conformations. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17600-17607.	7.1	202
44	Clathrin and synaptic vesicle endocytosis: studies at the squid giant synapse. Biochemical Society Transactions, 2006, 34, 68-72.	3.4	36
45	Pulsed local-field fluorescence microscopy: a new approach for measuring cellular signals in the beating heart. Pflugers Archiv European Journal of Physiology, 2003, 445, 747-758.	2.8	29
46	Ryanodine Receptor Adaptation. Journal of General Physiology, 2000, 116, 873-882.	1.9	51