Lei Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5500640/publications.pdf

Version: 2024-02-01

257357 175177 3,416 49 24 52 citations h-index g-index papers 55 55 55 5249 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	<i>TRANS-ACTING SIRNA3-</i> derived short interfering RNAs confer cleavage of mRNAs in rice. Plant Physiology, 2022, 188, 347-362.	2.3	6
2	OsRLR4 binds to the $\langle i \rangle$ OsAUX1 $\langle i \rangle$ promoter to negatively regulate primary root development in rice. Journal of Integrative Plant Biology, 2022, 64, 118-134.	4.1	7
3	Origin, evolution and diversification of plant ARGONAUTE proteins. Plant Journal, 2022, 109, 1086-1097.	2.8	24
4	Arabidopsis RBV is a conserved WD40 repeat protein that promotes microRNA biogenesis and ARGONAUTE1 loading. Nature Communications, 2022, 13, 1217.	5.8	19
5	Mechanism for the genomic and functional evolution of the MIR2118 family in the grass lineage. New Phytologist, 2022, 233, 1915-1930.	3.5	5
6	NAD+-capped RNAs are widespread in rice (Oryza sativa) and spatiotemporally modulated during development. Science China Life Sciences, 2022, 65, 2121-2124.	2.3	4
7	Plant miR397 and its functions. Functional Plant Biology, 2021, 48, 361.	1.1	37
8	Widespread occurrence of microRNA-mediated target cleavage on membrane-bound polysomes. Genome Biology, 2021, 22, 15.	3.8	19
9	ZmFdC2 Encoding a Ferredoxin Protein With C-Terminus Extension Is Indispensable for Maize Growth. Frontiers in Plant Science, 2021, 12, 646359.	1.7	2
10	RiboNT: A Noise-Tolerant Predictor of Open Reading Frames from Ribosome-Protected Footprints. Life, 2021, 11, 701.	1.1	8
11	Comparative ribosome profiling reveals distinct translational landscapes of salt-sensitive and -tolerant rice. BMC Genomics, 2021, 22, 612.	1.2	10
12	Distinct Evolutionary Profiles and Functions of microRNA156 and microRNA529 in Land Plants. International Journal of Molecular Sciences, 2021, 22, 11100.	1.8	8
13	Genome-wide mRNA and small RNA transcriptome profiles uncover cultivar- and tissue-specific changes induced by cadmium in Brassica parachinensis. Environmental and Experimental Botany, 2020, 180, 104207.	2.0	7
14	High-Throughput Sequencing-Based Identification of Arabidopsis miRNAs Induced by Phytophthora capsici Infection. Frontiers in Microbiology, 2020, 11, 1094.	1.5	15
15	Genome-Wide Transcript and Small RNA Profiling Reveals Transcriptomic Responses to Heat Stress. Plant Physiology, 2019, 181, 609-629.	2.3	49
16	The PROTEIN PHOSPHATASE4 Complex Promotes Transcription and Processing of Primary microRNAs in Arabidopsis. Plant Cell, 2019, 31, 486-501.	3.1	51
17	SnRK2s at the Crossroads of Growth and Stress Responses. Trends in Plant Science, 2019, 24, 672-676.	4.3	39
18	AUSPP: A universal short-read pre-processing package. Journal of Bioinformatics and Computational Biology, 2019, 17, 1950037.	0.3	3

#	Article	IF	Citations
19	Proteasome subunit RPT2a promotes PTGS through repressing RNA quality control in Arabidopsis. Nature Plants, 2019, 5, 1273-1282.	4.7	11
20	Prevalent cytidylation and uridylation of precursor miRNAs in Arabidopsis. Nature Plants, 2019, 5, 1260-1272.	4.7	19
21	MicroRNAs transcriptionally regulate promoter activity in <i>Arabidopsis thaliana</i> Integrative Plant Biology, 2019, 61, 1128-1133.	4.1	20
22	The disease resistance protein SNC1 represses the biogenesis of microRNAs and phased siRNAs. Nature Communications, 2018, 9, 5080.	5.8	60
23	Conservation and divergence of small RNA pathways and microRNAs in land plants. Genome Biology, 2017, 18, 158.	3.8	91
24	ARGONAUTE10 promotes the degradation of miR165/6 through the SDN1 and SDN2 exonucleases in Arabidopsis. PLoS Biology, 2017, 15, e2001272.	2.6	81
25	The MBD7 complex promotes expression of methylated transgenes without significantly altering their methylation status. ELife, 2017, 6, .	2.8	18
26	POWERDRESS and HDA9 interact and promote histone H3 deacetylation at specific genomic sites in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14858-14863.	3.3	111
27	Concerted genomic targeting of H3K27 demethylase REF6 and chromatin-remodeling ATPase BRM in Arabidopsis. Nature Genetics, 2016, 48, 687-693.	9.4	193
28	A partial loss-of-function mutation in an Arabidopsis RNA polymerase III subunit leads to pleiotropic defects. Journal of Experimental Botany, 2016, 67, 2219-2230.	2.4	17
29	SUVH1, a Su(var)3–9 family member, promotes the expression of genes targeted by DNA methylation. Nucleic Acids Research, 2016, 44, 608-620.	6.5	41
30	Genome-Wide Identification and Characterization of microRNAs in Developing Grains of Zea mays L PLoS ONE, 2016, 11, e0153168.	1.1	34
31	Biogenesis of phased siRNAs on membrane-bound polysomes in Arabidopsis. ELife, 2016, 5, .	2.8	104
32	The Arabidopsis SWI2/SNF2 Chromatin Remodeler BRAHMA Regulates Polycomb Function during Vegetative Development and Directly Activates the Flowering Repressor Gene SVP. PLoS Genetics, 2015, 11, e1004944.	1.5	111
33	Detection of Pol IV/RDR2-dependent transcripts at the genomic scale in <i>Arabidopsis</i> reveals features and regulation of siRNA biogenesis. Genome Research, 2015, 25, 235-245.	2.4	143
34	DNA Topoisomerase $1\hat{l}_{\pm}$ Promotes Transcriptional Silencing of Transposable Elements through DNA Methylation and Histone Lysine 9 Dimethylation in Arabidopsis. PLoS Genetics, 2014, 10, e1004446.	1.5	26
35	DNA Topoisomerase I Affects Polycomb Group Protein-Mediated Epigenetic Regulation and Plant Development by Altering Nucleosome Distribution in <i>Arabidopsis</i> I) Plant Cell, 2014, 26, 2803-2817.	3.1	38
36	Roles of small <scp>RNA</scp> s in soybean defense against <i><iscp>Phytophthora sojae</iscp></i> infection. Plant Journal, 2014, 79, 928-940.	2.8	122

#	Article	IF	CITATIONS
37	Genome-wide analysis of microRNAs in rubber tree (Hevea brasiliensis L.) using high-throughput sequencing. Planta, 2012, 236, 437-445.	1.6	41
38	High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice. BMC Plant Biology, $2012,12,132.$	1.6	157
39	Development of a luciferase-based reporter of transcriptional gene silencing that enables bidirectional mutant screening in Arabidopsis thaliana. Silence: A Journal of RNA Regulation, 2012, 3, 6.	8.0	8
40	Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes. BMC Plant Biology, 2011, 11, 127.	1.6	187
41	A fungal phylogeny based on 82 complete genomes using the composition vector method. BMC Evolutionary Biology, 2009, 9, 195.	3.2	194
42	Global Occurrence of Archaeal <i>amoA</i> Genes in Terrestrial Hot Springs. Applied and Environmental Microbiology, 2008, 74, 6417-6426.	1.4	189
43	Environmental Adaptation: Genomic Analysis of the Piezotolerant and Psychrotolerant Deep-Sea Iron Reducing Bacterium Shewanella piezotolerans WP3. PLoS ONE, 2008, 3, e1937.	1.1	123
44	Whole genome molecular phylogeny of large dsDNA viruses using composition vector method. BMC Evolutionary Biology, 2007, 7, 41.	3.2	89
45	Prokaryote phylogeny meets taxonomy: An exhaustive comparison of composition vector trees with systematic bacteriology. Science in China Series C: Life Sciences, 2007, 50, 587-599.	1.3	22
46	Test Data Sets and Evaluation of Gene Prediction Programs on the Rice Genome. Journal of Computer Science and Technology, 2005, 20, 446-453.	0.9	14
47	The Genomes of Oryza sativa: A History of Duplications. PLoS Biology, 2005, 3, e38.	2.6	808
48	Molecular phylogeny of coronaviruses including human SARS-CoV. Science Bulletin, 2003, 48, 1170-1174.	1.7	22
49	Molecular phylogeny of coronaviruses including human SARS-CoV. Science Bulletin, 2003, 48, 1170.	1.7	2