Philip Marx-Stoelting

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5500258/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Review of the Implementation of the Embryonic Stem Cell Test (EST). ATLA Alternatives To Laboratory Animals, 2009, 37, 313-328.	1.0	144
2	Scientific principles for the identification of endocrine-disrupting chemicals: a consensus statement. Archives of Toxicology, 2017, 91, 1001-1006.	4.2	118
3	Cenotype-phenotype relationships in hepatocellular tumors from mice and man. Hepatology, 2005, 42, 353-361.	7.3	86
4	Cross-species analysis of hepatic cytochrome P450 and transport protein expression. Archives of Toxicology, 2021, 95, 117-133.	4.2	57
5	Hepatotoxic effects of (tri)azole fungicides in a broad dose range. Archives of Toxicology, 2015, 89, 2105-2117.	4.2	53
6	Combination effects of azole fungicides in male rats in a broad dose range. Toxicology, 2016, 355-356, 54-63.	4.2	49
7	The PI3K and MAPK/p38 pathways control stress granule assembly in a hierarchical manner. Life Science Alliance, 2019, 2, e201800257.	2.8	49
8	Hepatotoxic combination effects of three azole fungicides in a broad dose range. Archives of Toxicology, 2018, 92, 859-872.	4.2	45
9	Pregnane X receptor mediates steatotic effects of propiconazole and tebuconazole in human liver cell lines. Archives of Toxicology, 2019, 93, 1311-1322.	4.2	41
10	Combination Effects of (Tri)Azole Fungicides on Hormone Production and Xenobiotic Metabolism in a Human Placental Cell Line. International Journal of Environmental Research and Public Health, 2014, 11, 9660-9679.	2.6	40
11	<i>Caenorhabditis elegans</i> As a Promising Alternative Model for Environmental Chemical Mixture Effect Assessment—A Comparative Study. Environmental Science & Technology, 2019, 53, 12725-12733.	10.0	40
12	Hepatotoxic effects of cyproconazole and prochloraz in wild-type and hCAR/hPXR mice. Archives of Toxicology, 2017, 91, 2895-2907.	4.2	39
13	The Connection of Azole Fungicides with Xeno-Sensing Nuclear Receptors, Drug Metabolism and Hepatotoxicity. Cells, 2020, 9, 1192.	4.1	35
14	The azole fungicide tebuconazole affects human CYP1A1 and CYP1A2 expression by an aryl hydrocarbon receptor-dependent pathway. Food and Chemical Toxicology, 2019, 123, 481-491.	3.6	34
15	Relevance and reliability of experimental data in human health risk assessment of pesticides. Regulatory Toxicology and Pharmacology, 2017, 88, 227-237.	2.7	33
16	Unexpected Effects of Propiconazole, Tebuconazole, and Their Mixture on the Receptors CAR and PXR in Human Liver Cells. Toxicological Sciences, 2018, 163, 170-181.	3.1	33
17	Application of omics data in regulatory toxicology: report of an international BfR expert workshop. Archives of Toxicology, 2015, 89, 2177-2184.	4.2	31
18	Hepatotoxicity of the pesticides imazalil, thiacloprid and clothianidin – Individual and mixture effects in a 28-day study in female Wistar rats. Food and Chemical Toxicology, 2020, 140, 111306.	3.6	31

PHILIP MARX-STOELTING

#	Article	IF	CITATIONS
19	Hepatocarcinogenesis in mice with a conditional knockout of the hepatocyte growth factor receptor câ€Met. International Journal of Cancer, 2009, 124, 1767-1772.	5.1	28
20	Assessment of mixture toxicity of (tri)azoles and their hepatotoxic effects in vitro by means of omics technologies. Archives of Toxicology, 2019, 93, 2321-2333.	4.2	28
21	Phenotype of single hepatocytes expressing an activated version of β-catenin in liver of transgenic mice. Journal of Molecular Histology, 2011, 42, 393-400.	2.2	24
22	The "EU chemicals strategy for sustainability―questions regulatory toxicology as we know it: is it all rooted in sound scientific evidence?. Archives of Toxicology, 2021, 95, 2589-2601.	4.2	24
23	Mixture effects of azole fungicides on the adrenal gland in a broad dose range. Toxicology, 2017, 385, 28-37.	4.2	22
24	Assessment of three approaches for regulatory decision making on pesticides with endocrine disrupting properties. Regulatory Toxicology and Pharmacology, 2014, 70, 590-604.	2.7	21
25	Mixture effects of chemicals: The difficulty to choose appropriate mathematical models for appropriate conclusions. Environmental Pollution, 2020, 260, 113953.	7.5	21
26	A prospective whole-mixture approach to assess risk of the food and chemical exposome. Nature Food, 2021, 2, 463-468.	14.0	19
27	Tumor Promotion in Liver of Mice with a Conditional Cx26 Knockout. Toxicological Sciences, 2008, 103, 260-267.	3.1	17
28	More than additive effects on liver triglyceride accumulation by combinations of steatotic and non-steatotic pesticides in HepaRG cells. Archives of Toxicology, 2021, 95, 1397-1411.	4.2	17
29	Effect of the tumor promoter phenobarbital on the pattern of global gene expression in liver of connexin32-wild-type and connexin32-deficient mice. International Journal of Cancer, 2005, 115, 861-869.	5.1	16
30	Propiconazole is an activator of AHR and causes concentration additive effects with an established AHR ligand. Archives of Toxicology, 2018, 92, 3471-3486.	4.2	13
31	Transcript and protein marker patterns for the identification of steatotic compounds in human HepaRG cells. Food and Chemical Toxicology, 2020, 145, 111690.	3.6	13
32	Mixture effects of two plant protection products in liver cell lines. Food and Chemical Toxicology, 2018, 112, 299-309.	3.6	12
33	Liver lobe and strain differences in the activity of murine cytochrome P450 enzymes. Toxicology, 2018, 404-405, 76-85.	4.2	11
34	Effects of co-formulants on the absorption and secretion of active substances in plant protection products in vitro. Archives of Toxicology, 2021, 95, 3205-3221.	4.2	11
35	Regulation of P53 stability in p53 mutated human and mouse hepatoma cells. International Journal of Cancer, 2007, 120, 1459-1464.	5.1	9
36	Towards a tiered test strategy for plant protection products to address mixture toxicity by alternative approaches in human health assessment. Pest Management Science, 2020, 76, 3326-3332.	3.4	9

#	Article	IF	CITATIONS
37	Recommendations for international harmonisation, implementation and further development of suitable scientific approaches regarding the assessment of mixture effects. Food and Chemical Toxicology, 2020, 141, 111388.	3.6	8
38	25th anniversary of the Berlin workshop on developmental toxicology: DevTox database update, challenges in risk assessment of developmental neurotoxicity and alternative methodologies in bone development and growth. Reproductive Toxicology, 2021, 100, 155-162.	2.9	8
39	Mixture prioritization and testing: the importance of toxicokinetics. Archives of Toxicology, 2021, 95, 1863-1864.	4.2	8
40	Transcriptomics analysis of hepatotoxicity induced by the pesticides imazalil, thiacloprid and clothianidin alone or in binary mixtures in a 28-day study in female Wistar rats. Archives of Toxicology, 2021, 95, 1039-1053.	4.2	8
41	An approach for mixture testing and prioritization based on common kinetic groups. Archives of Toxicology, 2022, 96, 1661-1671.	4.2	8
42	A Critical Scoping Review of Pesticide Exposure Biomonitoring Studies in Overhead Cultures. Toxics, 2022, 10, 170.	3.7	6
43	Use of transcriptomics in hazard identification and next generation risk assessment: A case study with clothianidin. Food and Chemical Toxicology, 2022, 166, 113212.	3.6	6
44	Endocrine Disruptor Effects on Estrogen, Androgen and Thyroid Pathways: Recent Advances on Screening and Assessment. Issues in Toxicology, 2020, , 1-24.	0.1	4
45	An eight-compound mixture but not corresponding concentrations of individual chemicals induces triglyceride accumulation in human liver cells. Toxicology, 2021, 459, 152857.	4.2	3
46	Reply to the opinion paper "The EU chemicals strategy for sustainability: an opportunity to develop new approaches for hazard assessment―by Scholz et al Archives of Toxicology, 2022, 96, 2387-2390.	4.2	3
47	Science-based decision matrix for the identification of endocrine disruptors for regulatory purposes. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 2016, 11, 203-208.	1.4	1
48	Induction and repression effects on CYP and transporter protein abundance by azole mixture uptake in rat liver. EXCLI Journal, 2020, 19, 904-916.	0.7	1