Jae-Seong Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5499794/publications.pdf Version: 2024-02-01

INF-SEONC PADE

#	Article	IF	CITATIONS
1	Single-Mode Photonic Crystal Nanobeam Lasers Monolithically Grown on Si for Dense Integration. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-6.	1.9	4
2	Recent Progress of Quantum Dot Lasers Monolithically Integrated on Si Platform. Frontiers in Physics, 2022, 10, .	1.0	14
3	Monolithic III–V quantum dot lasers on silicon. Frontiers of Nanoscience, 2021, 20, 353-388.	0.3	3
4	Origin of Defect Tolerance in InAs/GaAs Quantum Dot Lasers Grown on Silicon. Journal of Lightwave Technology, 2020, 38, 240-248.	2.7	46
5	Inversion Boundary Annihilation in GaAs Monolithically Grown on Onâ€Axis Silicon (001). Advanced Optical Materials, 2020, 8, 2000970.	3.6	22
6	Continuous-wave quantum dot photonic crystal lasers grown on on-axis Si (001). Nature Communications, 2020, 11, 977.	5.8	61
7	Heteroepitaxial Growth of III-V Semiconductors on Silicon. Crystals, 2020, 10, 1163.	1.0	56
8	Integration of III-V lasers on Si for Si photonics. Progress in Quantum Electronics, 2019, 66, 1-18.	3.5	86
9	III–V quantum-dot lasers monolithically grown on silicon. Semiconductor Science and Technology, 2018, 33, 123002.	1.0	35
10	Formation of an indium tin oxide nanodot/Ag nanowire electrode as a current spreader for near ultraviolet AlGaN-based light-emitting diodes. Nanotechnology, 2017, 28, 045205.	1.3	9
11	Review—Group III-Nitride-Based Ultraviolet Light-Emitting Diodes: Ways of Increasing External Quantum Efficiency. ECS Journal of Solid State Science and Technology, 2017, 6, Q42-Q52.	0.9	81
12	Ag nanowire-based electrodes for improving the output power of ultraviolet AlGaN-based light-emitting diodes. Journal of Alloys and Compounds, 2017, 703, 198-203.	2.8	13
13	Using agglomerated Ag grid to improve the light output of near ultraviolet AlGaN-based light-emitting diode. Microelectronic Engineering, 2017, 169, 29-33.	1.1	7
14	A Thermally Stable NiZn/Ta/Ni Scheme to Replace AuBe/Au Contacts in High-Efficiency AlGaInP-Based Light-Emitting Diodes. Journal of Electronic Materials, 2017, 46, 4750-4754.	1.0	0
15	Use of a patterned current blocking layer to enhance the light output power of InGaN-based light-emitting diodes. Optics Express, 2017, 25, 17556.	1.7	11
16	Thermally stable AuBe-based ohmic contacts to p-type GaP for AlGaInP-based light-emitting diode by using a tungsten barrier layer. Journal of the Korean Physical Society, 2016, 68, 306-310.	0.3	2
17	A tantalum diffusion barrier layer for improving the output performance of AlGaInP-based light-emitting diodes. Japanese Journal of Applied Physics, 2016, 55, 032102.	0.8	2
18	Hybrid indium tin oxide/Ag nanowire electrodes for improving the light output power of near ultraviolet AlGaN-based light-emitting diode. Current Applied Physics, 2016, 16, 545-548.	1.1	13

JAE-SEONG PARK

#	Article	IF	CITATIONS
19	Improving the output power of GaN-based light-emitting diode using Ag particles embedded within a SiO2 current blocking layer. Superlattices and Microstructures, 2015, 83, 361-366.	1.4	8
20	Formation of low resistance Ti/Al-based ohmic contacts on (11–22) semipolar n-type GaN. Journal of Alloys and Compounds, 2015, 652, 167-171.	2.8	8
21	Controlling interface oxygen for forming Ag ohmic contact to semi-polar (1 1 â^2 2) plane p-type GaN. Superlattices and Microstructures, 2014, 75, 962-967.	1.4	2
22	Highly reliable Ti-based ohmic contact to N-polar n-type GaN for vertical-geometry light-emitting diodes by using a Ta barrier layer. Optics Express, 2014, 22, A759.	1.7	1
23	Polarity dependence of the electrical characteristics of Ag reflectors for high-power GaN-based light emitting diodes. Applied Physics Letters, 2014, 104, 172104.	1.5	3
24	Graphene diffusion barrier for forming ohmic contact on N-polar n-type GaN for high-power vertical-geometry light-emitting diodes. Applied Physics Express, 2014, 7, 046501.	1.1	3
25	Highly thermally stable Pd/Zn/Ag ohmic contact to Ga-face p-type GaN. Journal of Alloys and Compounds, 2014, 588, 327-331.	2.8	13
26	Silver-induced activation for improving the electrical characteristics of GaN-based vertical light-emitting diodes. Current Applied Physics, 2013, 13, 377-380.	1.1	2
27	Dependence of thickness and temperature on the thermal stability of Ag films deposited on GaN layers for vertical-geometry GaN-based light-emitting diodes. Superlattices and Microstructures, 2013, 61, 160-167.	1.4	4
28	Improving the output power of near-ultraviolet InGaN/GaN-based light emitting diodes by enhancing the thermal and electrical properties of Ag-based reflector. Superlattices and Microstructures, 2013, 64, 7-14.	1.4	4
29	Near ultraviolet InGaN/AlGaN-based light-emitting diodes with highly reflective tin-doped indium oxide/Al-based reflectors. Optics Express, 2013, 21, 26774.	1.7	13
30	Enhanced thermal stability of Ag ohmic reflector for InGaN/GaN light-emitting diode using a Ru capping layer. Superlattices and Microstructures, 2012, 52, 357-363.	1.4	3
31	Improved Thermal Stability of Ag Ohmic Contacts for GaN-Based Vertical Light-Emitting Diodes Using a Zn Capping Layer. Electrochemical and Solid-State Letters, 2012, 15, H130.	2.2	8