## Kostiantyn Kravchyk

## List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/549959/kostiantyn-kravchyk-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

65 2,803 27 52 h-index g-index citations papers 5.86 69 9.2 3,344 avg, IF L-index ext. citations ext. papers

| #  | Paper                                                                                                                                                                                                                     | IF   | Citations |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 65 | Perspective on design and technical challenges of Li-garnet solid-state batteries <i>Science and Technology of Advanced Materials</i> , <b>2022</b> , 23, 2018919                                                         | 7.1  | 2         |
| 64 | On the feasibility of all-solid-state batteries with LLZO as a single electrolyte <i>Scientific Reports</i> , <b>2022</b> , 12, 1177                                                                                      | 4.9  | 4         |
| 63 | Silicon oxycarbide-tin nanocomposite derived from a UV crosslinked single source preceramic precursor as high-performance anode materials for Li-ion batteries. <i>Applied Materials Today</i> , <b>2022</b> , 27, 101424 | 6.6  | O         |
| 62 | Break-Even Analysis of All-Solid-State Batteries with Li-Garnet Solid Electrolytes. <i>ACS Energy Letters</i> , <b>2021</b> , 6, 2202-2207                                                                                | 20.1 | 11        |
| 61 | An overview and prospective on Al and Al-ion battery technologies. <i>Journal of Power Sources</i> , <b>2021</b> , 481, 228870                                                                                            | 8.9  | 36        |
| 60 | Laser Patterning of High-Mass-Loading Graphite Anodes for High-Performance Li-Ion Batteries. <i>Batteries and Supercaps</i> , <b>2021</b> , 4, 464-468                                                                    | 5.6  | 5         |
| 59 | AlCl3-Saturated Ionic Liquid Anolyte with an Excess of AlCl3 for Al©raphite Dual-Ion Batteries. <i>Batteries and Supercaps</i> , <b>2021</b> , 4, 929-933                                                                 | 5.6  | 1         |
| 58 | Silicon oxycarbide-antimony nanocomposites for high-performance Li-ion battery anodes. <i>Nanoscale</i> , <b>2020</b> , 12, 13540-13547                                                                                   | 7.7  | 11        |
| 57 | Colloidal Antimony Sulfide Nanoparticles as a High-Performance Anode Material for Li-ion and Na-ion Batteries. <i>Scientific Reports</i> , <b>2020</b> , 10, 2554                                                         | 4.9  | 16        |
| 56 | Challenges and benefits of post-lithium-ion batteries. New Journal of Chemistry, 2020, 44, 1677-1683                                                                                                                      | 3.6  | 66        |
| 55 | Structural Evolution of Iron(III) Trifluoroacetate upon Thermal Decomposition: Chains, Layers, and Rings. <i>Chemistry of Materials</i> , <b>2020</b> , 32, 2482-2488                                                     | 9.6  | 3         |
| 54 | Limitations of Chloroaluminate Ionic Liquid Anolytes for Aluminum@raphite Dual-Ion Batteries. <i>ACS Energy Letters</i> , <b>2020</b> , 5, 545-549                                                                        | 20.1 | 26        |
| 53 | The Pitfalls in Nonaqueous Electrochemistry of Al-Ion and Al Dual-Ion Batteries. <i>Advanced Energy Materials</i> , <b>2020</b> , 10, 2002151                                                                             | 21.8 | 25        |
| 52 | Monodisperse CoSb nanocrystals as high-performance anode material for Li-ion batteries. <i>Chemical Communications</i> , <b>2020</b> , 56, 13872-13875                                                                    | 5.8  | 1         |
| 51 | Building better dual-ion batteries. MRS Energy & Sustainability, 2020, 7, 1                                                                                                                                               | 2.2  | 2         |
| 50 | Aluminum electrolytes for Al dual-ion batteries. Communications Chemistry, 2020, 3,                                                                                                                                       | 6.3  | 20        |
| 49 | Building better all-solid-state batteries with Li-garnet solid electrolytes and metalloid anodes.<br>Journal of Materials Chemistry A, <b>2019</b> , 7, 21299-21308                                                       | 13   | 29        |

## (2018-2019)

| 48 | Anatase TiO2 Nanorods as Cathode Materials for Aluminum-Ion Batteries. <i>ACS Applied Nano Materials</i> , <b>2019</b> , 2, 6428-6435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.6  | 29  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 47 | Zeolite-Templated Carbon as a Stable, High Power Magnesium-Ion Cathode Material. <i>ACS Applied Materials &amp; Material</i> | 9.5  | 13  |
| 46 | Copper sulfide nanoparticles as high-performance cathode materials for Mg-ion batteries. <i>Scientific Reports</i> , <b>2019</b> , 9, 7988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.9  | 42  |
| 45 | Transition metal trifluoroacetates (M = Fe, Co, Mn) as precursors for uniform colloidal metal difluoride and phosphide nanoparticles. <i>Scientific Reports</i> , <b>2019</b> , 9, 6613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.9  | 6   |
| 44 | Zeolite-Templated Carbon as the Cathode for a High Energy Density Dual-Ion Battery. <i>ACS Applied Materials &amp; Amp; Interfaces</i> , <b>2019</b> , 11, 17686-17696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.5  | 27  |
| 43 | Overcoming the High-Voltage Limitations of Li-Ion Batteries Using a Titanium Nitride Current Collector. <i>ACS Applied Energy Materials</i> , <b>2019</b> , 2, 974-978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.1  | 10  |
| 42 | Rechargeable Dual-Ion Batteries with Graphite as a Cathode: Key Challenges and Opportunities. <i>Advanced Energy Materials</i> , <b>2019</b> , 9, 1901749                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21.8 | 75  |
| 41 | A high-voltage concept with sodium-ion conducting Ealumina for magnesium-sodium dual-ion batteries. <i>Communications Chemistry</i> , <b>2019</b> , 2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.3  | 13  |
| 40 | Silicon Oxycarbide-Tin Nanocomposite as a High-Power-Density Anode for Li-Ion Batteries. <i>Advanced Science</i> , <b>2019</b> , 6, 1901220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13.6 | 16  |
| 39 | Silicon Oxycarbide: Silicon Oxycarbide <b>T</b> in Nanocomposite as a High-Power-Density Anode for Li-Ion Batteries (Adv. Sci. 19/2019). <i>Advanced Science</i> , <b>2019</b> , 6, 1970116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13.6 | O   |
| 38 | Polypyrenes as High-Performance Cathode Materials for Aluminum Batteries. <i>Advanced Materials</i> , <b>2018</b> , 30, e1705644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24   | 122 |
| 37 | Popcorn-Shaped Fe O (WBtite) Nanoparticles from a Single-Source Precursor: Colloidal Synthesis and Magnetic Properties. <i>Chemistry of Materials</i> , <b>2018</b> , 30, 1249-1256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.6  | 19  |
| 36 | Aluminum Chloride-Graphite Batteries with Flexible Current Collectors Prepared from Earth-Abundant Elements. <i>Advanced Science</i> , <b>2018</b> , 5, 1700712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13.6 | 60  |
| 35 | Monodisperse CoSn and FeSn nanocrystals as high-performance anode materials for lithium-ion batteries. <i>Nanoscale</i> , <b>2018</b> , 10, 6827-6831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.7  | 41  |
| 34 | NaFeF3 Nanoplates as Low-Cost Sodium and Lithium Cathode Materials for Stationary Energy Storage. <i>Chemistry of Materials</i> , <b>2018</b> , 30, 1825-1829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.6  | 26  |
| 33 | Ni-Al-Cr superalloy as high temperature cathode current collector for advanced thin film Li batteries <i>RSC Advances</i> , <b>2018</b> , 8, 20304-20313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.7  | 14  |
| 32 | Colloidal Bismuth Nanocrystals as a Model Anode Material for Rechargeable Mg-Ion Batteries: Atomistic and Mesoscale Insights. <i>ACS Nano</i> , <b>2018</b> , 12, 8297-8307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16.7 | 41  |
| 31 | High-energy-density dual-ion battery for stationary storage of electricity using concentrated potassium fluorosulfonylimide. <i>Nature Communications</i> , <b>2018</b> , 9, 4469                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17.4 | 140 |

30 SnP nanocrystals as anode materials for Na-ion batteries. Journal of Materials Chemistry A, 2018, 6, 109583109663

| 29 | Zeolite-Templated Carbon as an Ordered Microporous Electrode for Aluminum Batteries. <i>ACS Nano</i> , <b>2017</b> , 11, 1911-1919                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16.7              | 119 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----|
| 28 | Efficient Aluminum ChlorideNatural Graphite Battery. Chemistry of Materials, 2017, 29, 4484-4492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.6               | 157 |
| 27 | Chromium nitride as a stable cathode current collector for all-solid-state thin film Li-ion batteries. <i>RSC Advances</i> , <b>2017</b> , 7, 26960-26967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.7               | 8   |
| 26 | Direct Synthesis of Bulk Boron-Doped Graphitic Carbon. <i>Chemistry of Materials</i> , <b>2017</b> , 29, 3211-3218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.6               | 40  |
| 25 | Nanocrystalline FeF3 and MF2 (M = Fe, Co, and Mn) from metal trifluoroacetates and their Li(Na)-ion storage properties. <i>Journal of Materials Chemistry A</i> , <b>2017</b> , 5, 7383-7393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13                | 42  |
| 24 | Kish Graphite Flakes as a Cathode Material for an Aluminum Chloride-Graphite Battery. <i>ACS Applied Materials &amp; Acs Applied &amp; Acs Appli</i> | 9.5               | 83  |
| 23 | Efficient and Inexpensive SodiumMagnesium Hybrid Battery. <i>Chemistry of Materials</i> , <b>2015</b> , 27, 7452-745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>58</b> 9.6     | 81  |
| 22 | Colloidal BiF3 nanocrystals: a bottom-up approach to conversion-type Li-ion cathodes. <i>Nanoscale</i> , <b>2015</b> , 7, 16601-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.7               | 17  |
| 21 | Monodisperse SnSb nanocrystals for Li-ion and Na-ion battery anodes: synergy and dissonance between Sn and Sb. <i>Nanoscale</i> , <b>2015</b> , 7, 455-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.7               | 118 |
| 20 | Evaluation of Metal Phosphide Nanocrystals as Anode Materials for Na-ion Batteries. <i>Chimia</i> , <b>2015</b> , 69, 724-728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.3               | 35  |
| 19 | Ionic and electronic conductivity of 3 mol% Fe2O3-substituted cubic yttria-stabilized ZrO2 (YSZ) and scandia-stabilized ZrO2 (ScSZ). <i>Solid State Ionics</i> , <b>2014</b> , 262, 517-521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.3               | 22  |
| 18 | Li3xLa2/3⊠TiO3 nanoparticles with different morphologies and self-organization, obtained from simple solution precipitation methods. <i>Materials Letters</i> , <b>2014</b> , 137, 182-187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.3               | 1   |
| 17 | Colloidal tin-germanium nanorods and their Li-ion storage properties. ACS Nano, <b>2014</b> , 8, 2360-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.7              | 62  |
| 16 | Unraveling the core-shell structure of ligand-capped Sn/SnOx nanoparticles by surface-enhanced nuclear magnetic resonance, MBsbauer, and X-ray absorption spectroscopies. <i>ACS Nano</i> , <b>2014</b> , 8, 2639-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 48 <sup>6.7</sup> | 81  |
| 15 | Monodisperse colloidal gallium nanoparticles: synthesis, low temperature crystallization, surface plasmon resonance and Li-ion storage. <i>Journal of the American Chemical Society</i> , <b>2014</b> , 136, 12422-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.4              | 87  |
| 14 | Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk. <i>Nano Letters</i> , <b>2014</b> , 14, 1255-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.5              | 380 |
| 13 | Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes. <i>Journal of the American Chemical Society</i> , <b>2013</b> , 135, 4199-202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16.4              | 314 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |     |

## LIST OF PUBLICATIONS

| 12 | State lonics, <b>2012</b> , 216, 19-24                                                                                                                                                            | 3.3  | 32 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 11 | Rare earth effect on conductivity and stability properties of doped barium indates as potential proton-conducting fuel cell electrolytes. <i>Solid State Ionics</i> , <b>2012</b> , 216, 11-14    | 3.3  | 16 |
| 10 | Ionic and electronic conductivity of 3mol% Fe2O3-substituted cubic Y-stabilized ZrO2. <i>Solid State Ionics</i> , <b>2012</b> , 226, 53-58                                                        | 3.3  | 12 |
| 9  | Metallic Nanoparticles and Proton Conductivity: Improving Proton Conductivity of BaCe0.9Y0.1O3IJsing a Catalytic Approach. <i>Chemistry of Materials</i> , <b>2012</b> , 24, 4641-4646            | 9.6  | 17 |
| 8  | Metallic Nanoparticles and Proton Conductivity: Improving Proton Conductivity of BaCe0.9Y0.1O3-I and La0.75Sr0.25Cr0.5Mn0.5O3-I by Ni-doping. <i>ECS Transactions</i> , <b>2012</b> , 45, 143-154 | 1    | 6  |
| 7  | Cathode materials for La0.995Ca0.005NbO4 proton ceramic electrolyte. <i>International Journal of Hydrogen Energy</i> , <b>2011</b> , 36, 13059-13066                                              | 6.7  | 15 |
| 6  | Compatibility of La26O27(BO3)8 electrolyte with standard cathode materials for use in proton conducting solid oxide fuel cells. <i>Journal of Power Sources</i> , <b>2011</b> , 196, 7435-7441    | 8.9  | 10 |
| 5  | Spontaneous fractal ordering of zirconium oxide nanoparticles during synthesis from solution. <i>Journal of the European Ceramic Society</i> , <b>2010</b> , 30, 141-145                          | 6    | 4  |
| 4  | Effect of synthesis conditions on the fractal structure of yttrium-stabilized zirconium dioxide.<br>Journal of Non-Crystalline Solids, <b>2009</b> , 355, 2557-2561                               | 3.9  | 5  |
| 3  | MBsbauer and X-ray Diffraction Studies of Cubic Solid Solutions of the ZrO2N2O3He2O3System.<br>Journal of Physical Chemistry C, <b>2008</b> , 112, 3914-3919                                      | 3.8  | 8  |
| 2  | Influence of the Chemical Composition on Structural Properties and Electrical Conductivity of YūeūrO2. <i>Chemistry of Materials</i> , <b>2007</b> , 19, 5179-5184                                | 9.6  | 16 |
| 1  | Building a Better Li-Garnet Solid Electrolyte/Metallic Li Interface with Antimony. <i>Advanced Energy Materials</i> ,2102086                                                                      | 21.8 | 16 |