Christopher D Arp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5499499/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trapped Under Ice: Spatial and Seasonal Dynamics of Dissolved Organic Matter Composition in Tundra Lakes. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	3
2	Lake basins drive variation in catchmentâ€scale runoff response over a decade of increasing rainfall in Arctic Alaska. Hydrological Processes, 2022, 36, .	1.1	2
3	Landsat-derived bathymetry of lakes on the Arctic Coastal Plain of northern Alaska. Earth System Science Data, 2021, 13, 1135-1150.	3.7	6
4	Remote sensing of lake ice phenology in Alaska. Environmental Research Letters, 2021, 16, 064007.	2.2	4
5	Classifying connectivity to guide aquatic habitat management in an arctic coastal plain watershed experiencing land use and climate change. Arctic, Antarctic, and Alpine Research, 2020, 52, 476-490.	0.4	5
6	Evidence of Hydrological Intensification and Regime Change From Northern Alaskan Watershed Runoff. Geophysical Research Letters, 2020, 47, e2020GL089186.	1.5	19
7	Identifying historical and future potential lake drainage events on the western Arctic coastal plain of Alaska. Permafrost and Periglacial Processes, 2020, 31, 110-127.	1.5	30
8	Recurring outburst floods from drained lakes: an emerging Arctic hazard. Frontiers in Ecology and the Environment, 2020, 18, 384-390.	1.9	18
9	Observation-derived ice growth curves show patterns and trends in maximum ice thickness and safe travel duration of Alaskan lakes and rivers. Cryosphere, 2020, 14, 3595-3609.	1.5	7
10	Ice roads through lake-rich Arctic watersheds: Integrating climate uncertainty and freshwater habitat responses into adaptive management. Arctic, Antarctic, and Alpine Research, 2019, 51, 9-23.	0.4	22
11	Potential shifts in zooplankton community structure in response to changing ice regimes and hydrologic connectivity. Arctic, Antarctic, and Alpine Research, 2019, 51, 327-345.	0.4	15
12	The complementary role of lentic and lotic habitats for Arctic grayling in a complex stream″ake network in Arctic Alaska. Ecology of Freshwater Fish, 2019, 28, 209-221.	0.7	17
13	Surface nuclear magnetic resonance observations of permafrost thaw below floating, bedfast, and transitional ice lakes. Geophysics, 2019, 84, EN33-EN45.	1.4	13
14	Analyzing floating and bedfast lake ice regimes across Arctic Alaska using 25†years of space-borne SAR imagery. Remote Sensing of Environment, 2018, 209, 660-676.	4.6	57
15	Greenhouse gas emissions from diverse Arctic Alaskan lakes are dominated by young carbon. Nature Climate Change, 2018, 8, 166-171.	8.1	72
16	Modelling the impacts of projected sea ice decline on the low atmosphere and nearâ€surface permafrost on the North Slope of Alaska. International Journal of Climatology, 2018, 38, 5491-5504.	1.5	5
17	Contrasting lake ice responses to winter climate indicate future variability and trends on the Alaskan Arctic Coastal Plain. Environmental Research Letters, 2018, 13, 125001.	2.2	11
18	A decade of remotely sensed observations highlight complex processes linked to coastal permafrost bluff erosion in the Arctic. Environmental Research Letters, 2018, 13, 115001.	2.2	73

CHRISTOPHER D ARP

#	Article	IF	CITATIONS
19	Transient Electromagnetic Surveys for the Determination of Talik Depth and Geometry Beneath Thermokarst Lakes. Journal of Geophysical Research: Solid Earth, 2018, 123, 9310-9323.	1.4	21
20	Tundra be dammed: Beaver colonization of the Arctic. Global Change Biology, 2018, 24, 4478-4488.	4.2	66
21	Estimation of snow accumulation over frozen Arctic lakes using repeat ICESat laser altimetry observations – A case study in northern Alaska. Remote Sensing of Environment, 2018, 216, 529-543.	4.6	10
22	Can Deep Groundwater Influx be Detected from the Geochemistry of Thermokarst Lakes in Arctic Alaska?. Permafrost and Periglacial Processes, 2017, 28, 552-557.	1.5	8
23	Recent Extreme Runoff Observations From Coastal Arctic Watersheds in Alaska. Water Resources Research, 2017, 53, 9145-9163.	1.7	32
24	Spatial and Temporal Variation in Methane Concentrations, Fluxes, and Sources in Lakes in Arctic Alaska. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 2966-2981.	1.3	18
25	A lake-centric geospatial database to guide research and inform management decisions in an Arctic watershed in northern Alaska experiencing climate and land-use changes. Ambio, 2017, 46, 769-786.	2.8	19
26	A synthesis of thermokarst lake water balance in high-latitude regions of North America from isotope tracers. Arctic Science, 2017, 3, 118-149.	0.9	34
27	Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate. Geophysical Research Letters, 2016, 43, 6358-6365.	1.5	68
28	Arctic sea ice decline contributes to thinning lake ice trend in northern Alaska. Environmental Research Letters, 2016, 11, 074022.	2.2	22
29	Impacts of shore expansion and catchment characteristics on lacustrine thermokarst records in permafrost lowlands, Alaska Arctic Coastal Plain. Arktos, 2016, 2, 1.	1.0	16
30	Predicting Late Winter Dissolved Oxygen Levels in Arctic Lakes Using Morphology and Landscape Metrics. Environmental Management, 2016, 57, 463-473.	1.2	31
31	Seasonal cues of Arctic grayling movement in a small Arctic stream: the importance of surface water connectivity. Environmental Biology of Fishes, 2016, 99, 49-65.	0.4	33
32	Recent Arctic tundra fire initiates widespread thermokarst development. Scientific Reports, 2015, 5, 15865.	1.6	139
33	Depth, ice thickness, and iceâ€out timing cause divergent hydrologic responses among Arctic lakes. Water Resources Research, 2015, 51, 9379-9401.	1.7	66
34	Observing a Catastrophic Thermokarst Lake Drainage in Northern Alaska. Permafrost and Periglacial Processes, 2015, 26, 119-128.	1.5	76
35	Distribution and biophysical processes of beaded streams in Arctic permafrost landscapes. Biogeosciences, 2015, 12, 29-47.	1.3	25
36	Classification of freshwater ice conditions on the Alaskan Arctic Coastal Plain using ground penetrating radar and TerraSAR-X satellite data. International Journal of Remote Sensing, 2013, 34, 8267-8279.	1.3	27

CHRISTOPHER D ARP

#	Article	IF	CITATIONS
37	Recent lake iceâ€out phenology within and among lake districts of Alaska, U.S.A. Limnology and Oceanography, 2013, 58, 2013-2028.	1.6	59
38	Identification of unrecognized tundra fire events on the north slope of Alaska. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1334-1344.	1.3	58
39	Contrasting Historical and Recent Breakup Styles on the Meade River of Arctic Alaska in the Context of a Warming Climate. American Journal of Climate Change, 2013, 02, 165-172.	0.5	2
40	Process-Based Coastal Erosion Modeling for Drew Point, North Slope, Alaska. Journal of Waterway, Port, Coastal and Ocean Engineering, 2012, 138, 122-130.	0.5	36
41	Assessment of pingo distribution and morphometry using an IfSAR derived digital surface model, western Arctic Coastal Plain, Northern Alaska. Geomorphology, 2012, 138, 1-14.	1.1	37
42	Drainage Network Structure and Hydrologic Behavior of Three Lake-Rich Watersheds on the Arctic Coastal Plain, Alaska. Arctic, Antarctic, and Alpine Research, 2012, 44, 385-398.	0.4	41
43	Shifting balance of thermokarst lake ice regimes across the Arctic Coastal Plain of northern Alaska. Geophysical Research Letters, 2012, 39, .	1.5	73
44	Analyzing the Impacts of Off-Road Vehicle (ORV) Trails on Watershed Processes in Wrangell-St. Elias National Park and Preserve, Alaska. Environmental Management, 2012, 49, 751-766.	1.2	13
45	Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska. Journal of Geophysical Research, 2011, 116, .	3.3	250
46	Hydrogeomorphic processes of thermokarst lakes with groundedâ€ice and floatingâ€ice regimes on the Arctic coastal plain, Alaska. Hydrological Processes, 2011, 25, 2422-2438.	1.1	106
47	Two mechanisms of aquatic and terrestrial habitat change along an Alaskan Arctic coastline. Polar Biology, 2010, 33, 1629-1640.	0.5	42
48	Fire Behavior, Weather, and Burn Severity of the 2007 Anaktuvuk River Tundra Fire, North Slope, Alaska. Arctic, Antarctic, and Alpine Research, 2009, 41, 309-316.	0.4	115
49	Arctic Lake Physical Processes and Regimes with Implications for Winter Water Availability and Management in the National Petroleum Reserve Alaska. Environmental Management, 2009, 43, 1071-1084.	1.2	70
50	Erosional history of Cape Halkett and contemporary monitoring of bluff retreat, Beaufort Sea coast, Alaska. Polar Geography, 2009, 32, 129-142.	0.8	26
51	Increase in the rate and uniformity of coastline erosion in Arctic Alaska. Geophysical Research Letters, 2009, 36, .	1.5	252
52	Hydrologic control of nitrogen removal, storage, and export in a mountain stream. Limnology and Oceanography, 2009, 54, 2128-2142.	1.6	83
53	Modern Erosion Rates and Loss of Coastal Features and Sites, Beaufort Sea Coastline, Alaska. Arctic, 2009, 61, .	0.2	14
54	Radar imaging of winter seismic survey activity in the National Petroleum Reserve-Alaska. Polar Record, 2008, 44, 227-231.	0.4	1

CHRISTOPHER D ARP

#	Article	IF	CITATIONS
55	Discontinuities in stream nutrient uptake below lakes in mountain drainage networks. Limnology and Oceanography, 2007, 52, 1978-1990.	1.6	27
56	Disruptions of stream sediment size and stability by lakes in mountain watersheds: potential effects on periphyton biomass. Journal of the North American Benthological Society, 2007, 26, 390-400.	3.0	20
57	Stream geomorphology in a mountain lake district: hydraulic geometry, sediment sources and sinks, and downstream lake effects. Earth Surface Processes and Landforms, 2007, 32, 525-543.	1.2	41
58	Surface-water hydrodynamics and regimes of a small mountain stream–lake ecosystem. Journal of Hydrology, 2006, 329, 500-513.	2.3	33
59	Analysis of Sediment Retention in Western Riverine Wetlands: The Yampa River Watershed, Colorado, USA. Environmental Management, 2004, 33, 318-30.	1.2	11
60	The effects of acid rock drainage onCarex aquatilis leaf litter decomposition in rocky Mountain fens. Wetlands, 1999, 19, 665-674.	0.7	7
61	The Polar WRF Downscaled Historical and Projected Twenty-First Century Climate for the Coast and Foothills of Arctic Alaska. Frontiers in Earth Science, 0, 5, .	0.8	13
62	Modeled streamflow response to scenarios of tundra lake water withdrawal and seasonal climate extremes, Arctic Coastal Plain, Alaska. Water Resources Research, 0, , .	1.7	0