List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5499383/publications.pdf

Version: 2024-02-01



<u> ΟοροτμΑΘε ΜιςςΑΘ</u>

| #  | Article                                                                                                                                                                                                                             | lF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Dengue virus infection modifies mosquito blood-feeding behavior to increase transmission to the host. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .                                 | 3.3 | 18        |
| 2  | Phylogenetic relationship between the endosymbiont "Candidatus Riesia pediculicola―and its human<br>louse host. Parasites and Vectors, 2022, 15, 73.                                                                                | 1.0 | 0         |
| 3  | Longitudinal Survey of Coronavirus Circulation and Diversity in Insectivorous Bat Colonies in Zimbabwe. Viruses, 2022, 14, 781.                                                                                                     | 1.5 | 6         |
| 4  | Mayaro Virus Infects Human Brain Cells and Induces a Potent Antiviral Response in Human Astrocytes.<br>Viruses, 2021, 13, 465.                                                                                                      | 1.5 | 9         |
| 5  | Chikungunya and Zika Viruses: Co-Circulation and the Interplay between Viral Proteins and Host<br>Factors. Pathogens, 2021, 10, 448.                                                                                                | 1.2 | 7         |
| 6  | New Insights into the Biology of the Emerging Tembusu Virus. Pathogens, 2021, 10, 1010.                                                                                                                                             | 1.2 | 17        |
| 7  | Delineating the Role of Aedes aegypti ABC Transporter Gene Family during Mosquito Development and<br>Arboviral Infection via Transcriptome Analyses. Pathogens, 2021, 10, 1127.                                                     | 1.2 | 9         |
| 8  | Human host genetics and susceptibility to ZIKV infection. Infection, Genetics and Evolution, 2021, 95, 105066.                                                                                                                      | 1.0 | 2         |
| 9  | Molecular Characterization and Genetic Diversity of Haplogroup E Human Lice in Guinea, West Africa.<br>Microorganisms, 2021, 9, 257.                                                                                                | 1.6 | 8         |
| 10 | Favipiravir Inhibits Mayaro Virus Infection in Mice. Viruses, 2021, 13, 2213.                                                                                                                                                       | 1.5 | 2         |
| 11 | Lipid Interactions Between Flaviviruses and Mosquito Vectors. Frontiers in Physiology, 2021, 12, 763195.                                                                                                                            | 1.3 | 6         |
| 12 | High resolution proteomics of Aedes aegypti salivary glands infected with either dengue, Zika or<br>chikungunya viruses identify new virus specific and broad antiviral factors. Scientific Reports, 2021,<br>11, 23696.            | 1.6 | 20        |
| 13 | Mosquito metabolomics reveal that dengue virus replication requires phospholipid reconfiguration via the remodeling cycle. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27627-27636. | 3.3 | 23        |
| 14 | Aedes Mosquito Salivary Components and Their Effect on the Immune Response to Arboviruses.<br>Frontiers in Cellular and Infection Microbiology, 2020, 10, 407.                                                                      | 1.8 | 34        |
| 15 | JNK pathway restricts DENV2, ZIKV and CHIKV infection by activating complement and apoptosis in mosquito salivary glands. PLoS Pathogens, 2020, 16, e1008754.                                                                       | 2.1 | 44        |
| 16 | Mayaro Virus Pathogenesis and Transmission Mechanisms. Pathogens, 2020, 9, 738.                                                                                                                                                     | 1.2 | 59        |
| 17 | Vector Competence for Dengue-2 Viruses Isolated from Patients with Different Disease Severity.<br>Pathogens, 2020, 9, 859.                                                                                                          | 1.2 | 4         |
| 18 | Highly Efficient Vertical Transmission for Zika Virus in Aedes aegypti after Long Extrinsic Incubation<br>Time. Pathogens, 2020, 9, 366.                                                                                            | 1.2 | 9         |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The role of innate immunity in the protection conferred by a bacterial infection against cancer: study of an invertebrate model. Scientific Reports, 2020, 10, 10106.                                                            | 1.6 | 7         |
| 20 | Cancer and mosquitoes – An unsuspected close connection. Science of the Total Environment, 2020,<br>743, 140631.                                                                                                                 | 3.9 | 3         |
| 21 | Rare and unique adaptations to cancer in domesticated species: An untapped resource?. Evolutionary Applications, 2020, 13, 1605-1614.                                                                                            | 1.5 | 11        |
| 22 | Zika virus differentially infects human neural progenitor cells according to their state of<br>differentiation and dysregulates neurogenesis through the Notch pathway. Emerging Microbes and<br>Infections, 2019, 8, 1003-1016. | 3.0 | 64        |
| 23 | Differential Susceptibility and Innate Immune Response of Aedes aegypti and Aedes albopictus to the<br>Haitian Strain of the Mayaro Virus. Viruses, 2019, 11, 924.                                                               | 1.5 | 21        |
| 24 | Increased Mosquito Midgut Infection by Dengue Virus Recruitment of Plasmin Is Blocked by an<br>Endogenous Kazal-type Inhibitor. IScience, 2019, 21, 564-576.                                                                     | 1.9 | 10        |
| 25 | Phylogenetic analysis revealed the co-circulation of four dengue virus serotypes in Southern<br>Thailand. PLoS ONE, 2019, 14, e0221179.                                                                                          | 1.1 | 31        |
| 26 | Mayaro Virus Infects Human Chondrocytes and Induces the Expression of Arthritis-Related Genes<br>Associated with Joint Degradation. Viruses, 2019, 11, 797.                                                                      | 1.5 | 13        |
| 27 | Transmissible cancer and the evolution of sex. PLoS Biology, 2019, 17, e3000275.                                                                                                                                                 | 2.6 | 12        |
| 28 | Zika virus infection: an update. Microbes and Infection, 2019, 21, 353-360.                                                                                                                                                      | 1.0 | 58        |
| 29 | Obesity paradox in cancer: Is bigger really better?. Evolutionary Applications, 2019, 12, 1092-1095.                                                                                                                             | 1.5 | 10        |
| 30 | Inhibition ofNâ€myristoyltransferase1 affects dengue virus replication. MicrobiologyOpen, 2019, 8,<br>e00831.                                                                                                                    | 1.2 | 6         |
| 31 | SAMHD1 Enhances Chikungunya and Zika Virus Replication in Human Skin Fibroblasts. International<br>Journal of Molecular Sciences, 2019, 20, 1695.                                                                                | 1.8 | 22        |
| 32 | Next-Generation Sequencing on Insectivorous Bat Guano: An Accurate Tool to Identify Arthropod<br>Viruses of Potential Agricultural Concern. Viruses, 2019, 11, 1102.                                                             | 1.5 | 7         |
| 33 | Dengue virus reduces AGPAT1Âexpression to alter phospholipids and enhance infection in Aedes aegypti.<br>PLoS Pathogens, 2019, 15, e1008199.                                                                                     | 2.1 | 19        |
| 34 | Interferon-inducible protein (IFI) 16 regulates Chikungunya and Zika virus infection in human skin<br>fibroblasts. EXCLI Journal, 2019, 18, 467-476.                                                                             | 0.5 | 13        |
| 35 | DENV-captured plasmin enhances mosquito midgut infection and is inhibited by an endogenous<br>Kazal-type inhibitor AaTI. Access Microbiology, 2019, 1, .                                                                         | 0.2 | 0         |
| 36 | Circulation of Alphacoronavirus, Betacoronavirus and Paramyxovirus in Hipposideros bat species in Zimbabwe. Infection, Genetics and Evolution, 2018, 58, 253-257.                                                                | 1.0 | 30        |

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Cancer Is Not (Only) a Senescence Problem. Trends in Cancer, 2018, 4, 169-172.                                                                                                                                                                       | 3.8 | 15        |
| 38 | Innate Immune Response of Primary Human Keratinocytes to West Nile Virus Infection and Its<br>Modulation by Mosquito Saliva. Frontiers in Cellular and Infection Microbiology, 2018, 8, 387.                                                         | 1.8 | 32        |
| 39 | Monitoring arbovirus in Thailand: Surveillance of dengue, chikungunya and zika virus, with a focus<br>on coinfections. Acta Tropica, 2018, 188, 244-250.                                                                                             | 0.9 | 20        |
| 40 | Zika virus infection modulates the metabolomic profile of microglial cells. PLoS ONE, 2018, 13, e0206093.                                                                                                                                            | 1.1 | 52        |
| 41 | African and Asian Zika virus strains differentially induce early antiviral responses in primary human astrocytes. Infection, Genetics and Evolution, 2017, 49, 134-137.                                                                              | 1.0 | 61        |
| 42 | Cancer brings forward oviposition in the fly <i>Drosophila melanogaster</i> . Ecology and Evolution, 2017, 7, 272-276.                                                                                                                               | 0.8 | 29        |
| 43 | Axl Mediates ZIKA Virus Entry in Human Glial Cells and Modulates Innate Immune Responses. Cell<br>Reports, 2017, 18, 324-333.                                                                                                                        | 2.9 | 361       |
| 44 | Zika virus causes supernumerary foci with centriolar proteins and impaired spindle positioning. Open<br>Biology, 2017, 7, 160231.                                                                                                                    | 1.5 | 34        |
| 45 | A Zika virus from America is more efficiently transmitted than an Asian virus by Aedes aegypti<br>mosquitoes from Asia. Scientific Reports, 2017, 7, 1215.                                                                                           | 1.6 | 61        |
| 46 | Imipramine Inhibits Chikungunya Virus Replication in Human Skin Fibroblasts through Interference with Intracellular Cholesterol Trafficking. Scientific Reports, 2017, 7, 3145.                                                                      | 1.6 | 80        |
| 47 | Infections and cancer: the "fifty shades of immunity―hypothesis. BMC Cancer, 2017, 17, 257.                                                                                                                                                          | 1.1 | 51        |
| 48 | Co-Infection of Mosquitoes with Chikungunya and Dengue Viruses Reveals Modulation of the<br>Replication of Both Viruses in Midguts and Salivary Glands of Aedes aegypti Mosquitoes. International<br>Journal of Molecular Sciences, 2017, 18, 1708.  | 1.8 | 48        |
| 49 | Infection of a French Population of Aedes albopictus and of Aedes aegypti (Paea Strain) with Zika Virus<br>Reveals Low Transmission Rates to These Vectors' Saliva. International Journal of Molecular Sciences,<br>2017, 18, 2384.                  | 1.8 | 19        |
| 50 | Dengue subgenomic flaviviral RNA disrupts immunity in mosquito salivary glands to increase virus<br>transmission. PLoS Pathogens, 2017, 13, e1006535.                                                                                                | 2.1 | 101       |
| 51 | Peridomestic Aedes malayensis and Aedes albopictus are capable vectors of arboviruses in cities. PLoS<br>Neglected Tropical Diseases, 2017, 11, e0005667.                                                                                            | 1.3 | 18        |
| 52 | Aedes Aegypti saliva enhances chikungunya virus replication in human skin fibroblasts via inhibition of the type I interferon signaling pathway. Infection, Genetics and Evolution, 2017, 55, 68-70.                                                 | 1.0 | 28        |
| 53 | First detection of dengue and chikungunya viruses in natural populations of Aedes aegypti in<br>Martinique during the 2013 – 2015 concomitant outbreak. Revista Panamericana De Salud Publica/Pan<br>American Journal of Public Health, 2017, 41, 1. | 0.6 | 14        |
| 54 | Dengue and Chikungunya Coinfection â $\in$ " The Emergence of an Underestimated Threat. , 2016, , .                                                                                                                                                  |     | 5         |

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Cancer and life-history traits: lessons from host–parasite interactions. Parasitology, 2016, 143, 533-541.                                                                                                      | 0.7 | 40        |
| 56 | The South Pacific epidemic strain of Zika virus replicates efficiently in human epithelial A549 cells<br>leading to IFN-β production and apoptosis induction. Virology, 2016, 493, 217-226.                     | 1.1 | 123       |
| 57 | The effects of mosquito saliva on dengue virus infectivity in humans. Current Opinion in Virology, 2016, 21, 139-145.                                                                                           | 2.6 | 25        |
| 58 | Zika virus: epidemiology, clinical features and host-virus interactions. Microbes and Infection, 2016, 18, 441-449.                                                                                             | 1.0 | 84        |
| 59 | Role of skin immune cells and mosquito saliva on the host susceptibility to Dengue virus. , 2016, , .                                                                                                           |     | 0         |
| 60 | Evolutionary perspective of cancer: myth, metaphors, and reality. Evolutionary Applications, 2015, 8, 541-544.                                                                                                  | 1.5 | 29        |
| 61 | Can Peto's paradox be used as the null hypothesis to identify the role of evolution in natural resistance to cancer? A critical review. BMC Cancer, 2015, 15, 792.                                              | 1.1 | 17        |
| 62 | Activity level and aggregation behavior in the crustacean gammarid Gammarus insensibilis parasitized by the manipulative trematode Microphallus papillorobustus. Frontiers in Ecology and Evolution, 2015, 3, . | 1.1 | 6         |
| 63 | Plasmodium infections and fluctuating asymmetry among children and teenagers from Senegal.<br>Infection, Genetics and Evolution, 2015, 32, 97-101.                                                              | 1.0 | 5         |
| 64 | Who is the puppet master? Replication of a parasitic wasp-associated virus correlates with host behaviour manipulation. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142773.           | 1.2 | 100       |
| 65 | Animal behaviour and cancer. Animal Behaviour, 2015, 101, 19-26.                                                                                                                                                | 0.8 | 39        |
| 66 | Biology of Zika Virus Infection in Human Skin Cells. Journal of Virology, 2015, 89, 8880-8896.                                                                                                                  | 1.5 | 1,015     |
| 67 | Cross-talk in host–parasite associations: What do past and recent proteomics approaches tell us?.<br>Infection, Genetics and Evolution, 2015, 33, 84-94.                                                        | 1.0 | 10        |
| 68 | Inflammasome signaling pathways exert antiviral effect against Chikungunya virus in human dermal fibroblasts. Infection, Genetics and Evolution, 2015, 32, 401-408.                                             | 1.0 | 87        |
| 69 | Induction of defensin response to dengue infection in <i><scp>A</scp>edes aegypti</i> . Entomological Science, 2015, 18, 199-206.                                                                               | 0.3 | 3         |
| 70 | Human keratinocytes restrict chikungunya virus replication at a post-fusion step. Virology, 2015, 476,<br>1-10.                                                                                                 | 1.1 | 29        |
| 71 | Aedesin: Structure and Antimicrobial Activity against Multidrug Resistant Bacterial Strains. PLoS ONE, 2014, 9, e105441.                                                                                        | 1.1 | 11        |
| 72 | Aedes aegypti Saliva Contains a Prominent 34-kDa Protein that Strongly Enhances Dengue Virus<br>Replication in Human Keratinocytes. Journal of Investigative Dermatology, 2014, 134, 281-284.                   | 0.3 | 64        |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Role of skin immune cells on the host susceptibility to mosquito-borne viruses. Virology, 2014, 464-465, 26-32.                                                                                                    | 1.1 | 85        |
| 74 | Cancer: a missing link in ecosystem functioning?. Trends in Ecology and Evolution, 2013, 28, 628-635.                                                                                                              | 4.2 | 67        |
| 75 | Isolation of infectious chikungunya virus and dengue virus using anionic polymer-coated magnetic<br>beads. Journal of Virological Methods, 2013, 193, 55-61.                                                       | 1.0 | 19        |
| 76 | Applying ecological and evolutionary theory to cancer: a long and winding road. Evolutionary Applications, 2013, 6, 1-10.                                                                                          | 1.5 | 70        |
| 77 | Peto's paradox revisited: theoretical evolutionary dynamics of cancer in wild populations.<br>Evolutionary Applications, 2013, 6, 109-116.                                                                         | 1.5 | 20        |
| 78 | First screening of <i><scp>A</scp>edes albopictus</i> immunogenic salivary proteins. Insect<br>Molecular Biology, 2013, 22, 411-423.                                                                               | 1.0 | 21        |
| 79 | Aedes Mosquito Saliva Modulates Rift Valley Fever Virus Pathogenicity. PLoS Neglected Tropical Diseases, 2013, 7, e2237.                                                                                           | 1.3 | 70        |
| 80 | First Attempt To Validate Human IgG Antibody Response to Nterm-34kDa Salivary Peptide as Biomarker<br>for Evaluating Exposure to Aedes aegypti Bites. PLoS Neglected Tropical Diseases, 2012, 6, e1905.            | 1.3 | 41        |
| 81 | Evaluation of the Human IgG Antibody Response to Aedes albopictus Saliva as a New Specific Biomarker of Exposure to Vector Bites. PLoS Neglected Tropical Diseases, 2012, 6, e1487.                                | 1.3 | 42        |
| 82 | Cat ownership is neither a strong predictor of <i>Toxoplasma gondii</i> infection nor a risk factor for brain cancer. Biology Letters, 2012, 8, 1042-1042.                                                         | 1.0 | 3         |
| 83 | Incidence of adult brain cancers is higher in countries where the protozoan parasite <i>Toxoplasma gondii</i> is common. Biology Letters, 2012, 8, 101-103.                                                        | 1.0 | 90        |
| 84 | Human Antibody Response to Aedes aegypti Saliva in an Urban Population in Bolivia: A New Biomarker<br>of Exposure to Dengue Vector Bites. American Journal of Tropical Medicine and Hygiene, 2012, 87,<br>504-510. | 0.6 | 58        |
| 85 | Update on the proteomics of major arthropod vectors of human and animal pathogens. Proteomics, 2012, 12, 3510-3523.                                                                                                | 1.3 | 20        |
| 86 | Aedes aegypti Saliva Enhances Dengue Virus Infection of Human Keratinocytes by Suppressing Innate<br>Immune Responses. Journal of Investigative Dermatology, 2012, 132, 2103-2105.                                 | 0.3 | 47        |
| 87 | Natural resistance to cancers: a Darwinian hypothesis to explain Peto's paradox. BMC Cancer, 2012, 12,<br>387.                                                                                                     | 1.1 | 44        |
| 88 | Ecology of <scp>G</scp> ordian knots in natural conditions. Invertebrate Biology, 2012, 131, 294-300.                                                                                                              | 0.3 | 4         |
| 89 | Brain cancer mortality rates increase with Toxoplasma gondii seroprevalence in France. Infection,<br>Genetics and Evolution, 2012, 12, 496-498.                                                                    | 1.0 | 63        |
| 90 | Malignancies and High Birth Weight in Human: Which Cancers Could Result from Antagonistic<br>Pleiotropy?. Journal of Evolutionary Medicine, 2012, 1, 1-5.                                                          | 0.5 | 3         |

| #   | Article                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Proteomics and Host—Pathogen Interactions. , 2011, , 263-303.                                                                                                                                   |     | 4         |
| 92  | Dengue virus replication in infected human keratinocytes leads to activation of antiviral innate immune responses. Infection, Genetics and Evolution, 2011, 11, 1664-1673.                      | 1.0 | 93        |
| 93  | Proteomic analysis of an Aedes albopictus cell line infected with Dengue serotypes 1 and 3 viruses.<br>Parasites and Vectors, 2011, 4, 138.                                                     | 1.0 | 33        |
| 94  | Implication of haematophagous arthropod salivary proteins in host-vector interactions. Parasites and Vectors, 2011, 4, 187.                                                                     | 1.0 | 153       |
| 95  | Herpes simplex virus type 2 and cancer: A medical geography approach. Infection, Genetics and Evolution, 2011, 11, 1239-1242.                                                                   | 1.0 | 16        |
| 96  | Induction of a Peptide with Activity against a Broad Spectrum of Pathogens in the Aedes aegypti<br>Salivary Gland, following Infection with Dengue Virus. PLoS Pathogens, 2011, 7, e1001252.    | 2.1 | 149       |
| 97  | Bloodâ€feeding and immunogenic <i>Aedes aegypti</i> saliva proteins. Proteomics, 2010, 10, 1906-1916.                                                                                           | 1.3 | 57        |
| 98  | Infection and body odours: Evolutionary and medical perspectives. Infection, Genetics and Evolution, 2009, 9, 1006-1009.                                                                        | 1.0 | 35        |
| 99  | The ecological significance of manipulative parasites. Trends in Ecology and Evolution, 2009, 24, 41-48.                                                                                        | 4.2 | 234       |
| 100 | Chapter 3 Invasion of the Body Snatchers. Advances in Parasitology, 2009, 68, 45-83.                                                                                                            | 1.4 | 123       |
| 101 | Neurological and Physiological Disorders in Artemia Harboring Manipulative Cestodes. Journal of<br>Parasitology, 2009, 95, 20-24.                                                               | 0.3 | 29        |
| 102 | Identification of apolipoprotein Câ€III as a potential plasmatic biomarker associated with the resolution of hepatitis C virus infection. Proteomics - Clinical Applications, 2008, 2, 751-761. | 0.8 | 9         |
| 103 | Hairworm response to notonectid attacks. Animal Behaviour, 2008, 75, 823-826.                                                                                                                   | 0.8 | 6         |
| 104 | Two steps to suicide in crickets harbouring hairworms. Animal Behaviour, 2008, 76, 1621-1624.                                                                                                   | 0.8 | 28        |
| 105 | Potentiation of NK cell-mediated cytotoxicity in human lung adenocarcinoma: role of<br>NKG2D-dependent pathway. International Immunology, 2008, 20, 801-810.                                    | 1.8 | 27        |
| 106 | Detection of H5N1 Avian Influenza Virus from Mosquitoes Collected in an Infected Poultry Farm in<br>Thailand. Vector-Borne and Zoonotic Diseases, 2008, 8, 105-110.                             | 0.6 | 35        |
| 107 | IL-22 Participates in an Innate Anti-HIV-1 Host-Resistance Network through Acute-Phase Protein<br>Induction. Journal of Immunology, 2007, 178, 407-415.                                         | 0.4 | 83        |
| 108 | Dengueâ€virusâ€infected dendritic cells trigger vascular leakage through metalloproteinase<br>overproduction. EMBO Reports, 2006, 7, 1176-1181.                                                 | 2.0 | 128       |

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Dengueâ€virusâ€infected dendritic cells trigger vascular leakage through metalloproteinase<br>overproduction. EMBO Reports, 2006, 7, 1290-1290.                                                    | 2.0 | 39        |
| 110 | Soluble HIV-1 gp120 enhances HIV-1 replication in non-dividing CD4+ T cells, mediated via cell signaling and Tat cofactor overexpression. Aids, 2005, 19, 897-905.                                 | 1.0 | 24        |
| 111 | Highly conserved β16/β17 β-hairpin structure in human immunodeficiency virus type 1 YU2 gp120 is critical for CCR5 binding. Journal of Molecular Medicine, 2005, 83, 542-552.                      | 1.7 | 9         |
| 112 | Rational design of a CD4 mimic that inhibits HIV-1 entry and exposes cryptic neutralization epitopes.<br>Nature Biotechnology, 2003, 21, 71-76.                                                    | 9.4 | 182       |
| 113 | HIV-1 glycoprotein 120 induces the MMP-9 cytopathogenic factor production that is abolished by inhibition of the p38 mitogen-activated protein kinase signaling pathway. Blood, 2001, 98, 541-547. | 0.6 | 67        |
| 114 | Hepatitis B virus Dane particles bind to human plasma apolipoprotein H. Hepatology, 2001, 33, 207-217.                                                                                             | 3.6 | 38        |
| 115 | The SU Glycoprotein 120 from HIV-1 Penetrates into Lipid Monolayers Mimicking Plasma Membranes.<br>Journal of Membrane Biology, 2000, 177, 251-257.                                                | 1.0 | 13        |
| 116 | Dengue Virus Recruitment of Plasmin Proteolysis Increases Mosquito Midgut Internalization,<br>Enhancing Infection Onset, and this Can Be Blocked by an Endogenous Kazal-Type Inhibitor. SSRN       | 0.4 | 0         |

Electronic Journal, 0, , .