
Sebastian Heeg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5499348/publications.pdf Version: 2024-02-01

SERASTIAN HEEC

#	Article	IF	CITATIONS
1	Freestanding and Permeable Nanoporous Gold Membranes for Surface-Enhanced Raman Scattering. ACS Applied Materials & Interfaces, 2022, 14, 16558-16567.	8.0	6
2	Experimental tests of surfaceâ€enhanced Raman scattering: Moving beyond the electromagnetic enhancement theory. Journal of Raman Spectroscopy, 2021, 52, 310-322.	2.5	18
3	Tunable Graphene Phononic Crystal. Nano Letters, 2021, 21, 2174-2182.	9.1	24
4	Fabrication and electrochemical response of pristine graphene ultramicroelectrodes. Carbon, 2021, 177, 207-215.	10.3	11
5	Anti-Stokes Raman Scattering of Single Carbyne Chains. ACS Nano, 2021, 15, 12249-12255.	14.6	20
6	In situ functionalization of graphene. 2D Materials, 2021, 8, 015022.	4.4	5
7	Raman Scattering Cross Section of Confined Carbyne. Nano Letters, 2020, 20, 6750-6755.	9.1	30
8	Beam Steering with a Nonlinear Optical Phased Array Antenna. Nano Letters, 2019, 19, 6097-6103.	9.1	24
9	Resonant, Plasmonic Raman Enhancement of α-6T Molecules Encapsulated in Carbon Nanotubes. Journal of Physical Chemistry C, 2019, 123, 10578-10585.	3.1	6
10	Tip-Enhanced Spectroscopy and Imaging of Carbon Nanomaterials. World Scientific Series on Carbon Nanoscience, 2019, , 175-221.	0.1	4
11	Graphene as a local probe to investigate near-field properties of plasmonic nanostructures. Physical Review B, 2018, 97, .	3.2	12
12	Minimizing residues and strain in 2D materials transferred from PDMS. Nanotechnology, 2018, 29, 265203.	2.6	108
13	Evaluating arbitrary strain configurations and doping in graphene with Raman spectroscopy. 2D Materials, 2018, 5, 015016.	4.4	95
14	Probing hotspots of plasmon-enhanced Raman scattering by nanomanipulation of carbon nanotubes. Nanotechnology, 2018, 29, 465710.	2.6	8
15	Raman resonance profile of an individual confined long linear carbon chain. Carbon, 2018, 139, 581-585.	10.3	22
16	Carbon Nanotube Chirality Determines Properties of Encapsulated Linear Carbon Chain. Nano Letters, 2018, 18, 5426-5431.	9.1	60
17	Dual-Scattering Near-Field Microscope for Correlative Nanoimaging of SERS and Electromagnetic Hotspots. Nano Letters, 2017, 17, 2667-2673.	9.1	49
18	Ultrasensitive and towards single molecule SERS: general discussion. Faraday Discussions, 2017, 205, 291-330.	3.2	11

SEBASTIAN HEEG

#	Article	IF	CITATIONS
19	Plasmonic enhancement of SERS measured on molecules in carbon nanotubes. Faraday Discussions, 2017, 205, 85-103.	3.2	13
20	Surface-enhanced Raman scattering as a higher-order Raman process. Physical Review A, 2016, 94, .	2.5	27
21	Graphene Oxide promotes embryonic stem cell differentiation to haematopoietic lineage. Scientific Reports, 2016, 6, 25917.	3.3	59
22	Scalable bottom-up assembly of suspended carbon nanotube and graphene devices by dielectrophoresis. Physica Status Solidi - Rapid Research Letters, 2015, 9, 539-543.	2.4	5
23	Plasmon-enhanced Raman scattering by suspended carbon nanotubes. Physica Status Solidi - Rapid Research Letters, 2014, 08, 785-789.	2.4	6
24	Plasmon-Enhanced Raman Scattering by Carbon Nanotubes Optically Coupled with Near-Field Cavities. Nano Letters, 2014, 14, 1762-1768.	9.1	50
25	Polarized Plasmonic Enhancement by Au Nanostructures Probed through Raman Scattering of Suspended Graphene. Nano Letters, 2013, 13, 301-308.	9.1	134
26	Selective interaction between nanotubes and peryleneâ€based surfactant. Physica Status Solidi - Rapid Research Letters, 2013, 7, 546-549.	2.4	2
27	Raman spectra of metallic carbon nanotubes in solution and on substrates. Physica Status Solidi (B): Basic Research, 2013, 250, 2639-2642.	1.5	3
28	Fermi energy shift in deposited metallic nanotubes: A Raman scattering study. Physical Review B, 2013, 87, .	3.2	12
29	Strained graphene as a local probe for plasmonâ€enhanced Raman scattering by gold nanostructures. Physica Status Solidi - Rapid Research Letters, 2013, 7, 1067-1070.	2.4	11
30	Analysing the photoluminescence intensities of singleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2012, 249, 2473-2478.	1.5	3
31	Assembly of carbon nanotubes and alkylated fullerenes: nanocarbon hybrid towards photovoltaic applications. Chemical Science, 2011, 2, 2243.	7.4	47
32	Selective Bundling of Zigzag Single-Walled Carbon Nanotubes. ACS Nano, 2011, 5, 2847-2854.	14.6	32
33	Broadened second excitonic transition of singleâ€walled carbon nanotubes in photoluminescence excitation spectroscopy. Physica Status Solidi (B): Basic Research, 2010, 247, 2887-2890.	1.5	0
34	Quantitative composition of a singleâ€walled carbon nanotube sample: Raman scattering versus photoluminescence. Physica Status Solidi (B): Basic Research, 2009, 246, 2740-2743.	1.5	13