
M Ängeles Lillo-RÃ³denas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5499151/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding chemical reactions between carbons and NaOH and KOH. Carbon, 2003, 41, 267-275.	5.4	1,003
2	Preparation of activated carbons from Spanish anthracite. Carbon, 2001, 39, 741-749.	5.4	608
3	Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations. Carbon, 2005, 43, 1758-1767.	5.4	472
4	Causes of supercapacitors ageing in organic electrolyte. Journal of Power Sources, 2007, 171, 1046-1053.	4.0	348
5	About reactions occurring during chemical activation with hydroxides. Carbon, 2004, 42, 1371-1375.	5.4	342
6	Preparation of activated carbons from Spanish anthracite. Carbon, 2001, 39, 751-759.	5.4	256
7	Spherical carbons: Synthesis, characterization and activation processes. Carbon, 2014, 68, 296-307.	5.4	242
8	Amorphous Carbon Nanofibers and Their Activated Carbon Nanofibers as Supercapacitor Electrodes. Journal of Physical Chemistry C, 2010, 114, 10302-10307.	1.5	240
9	Competitive adsorption of a benzene–toluene mixture on activated carbons at low concentration. Carbon, 2006, 44, 1455-1463.	5.4	164
10	Effects of different carbon materials on MgH2 decomposition. Carbon, 2008, 46, 126-137.	5.4	158
11	High surface area materials prepared from sewage sludge-based precursors. Chemosphere, 2006, 65, 132-140.	4.2	150
12	TiO2 nanotubes and CNT–TiO2 hybrid materials for the photocatalytic oxidation of propene at low concentration. Applied Catalysis B: Environmental, 2009, 92, 377-383.	10.8	149
13	Activated carbons prepared by pyrolysis of mixtures of carbon precursor/alkaline hydroxide. Journal of Analytical and Applied Pyrolysis, 2007, 80, 166-174.	2.6	131
14	Enhanced methane storage of chemically and physically activated carbide-derived carbon. Journal of Power Sources, 2009, 191, 560-567.	4.0	111
15	Benzene and toluene adsorption at low concentration on activated carbon fibres. Adsorption, 2011, 17, 473-481.	1.4	110
16	Capacitance of KOH activated carbide-derived carbons. Physical Chemistry Chemical Physics, 2009, 11, 4943.	1.3	89
17	Understanding RuO2·xH2O/carbon nanofibre composites as supercapacitor electrodes. Journal of Power Sources, 2008, 176, 417-425.	4.0	82
18	Spherical activated carbon as an enhanced support for TiO2/AC photocatalysts. Carbon, 2014, 67, 104-118.	5.4	72

#	Article	IF	CITATIONS
19	Electrochemical Regeneration of Activated Carbon Saturated with Toluene. Journal of Applied Electrochemistry, 2005, 35, 319-325.	1.5	68
20	A New Generation of Sludge-Based Adsorbents for H2S Abatement at Room Temperature. Environmental Science & Technology, 2007, 41, 4375-4381.	4.6	68
21	Spherical activated carbons for the adsorption of a real multicomponent VOC mixture. Carbon, 2019, 148, 214-223.	5.4	65
22	Effects of Carbon-Supported Nickel Catalysts on MgH2Decomposition. Journal of Physical Chemistry C, 2008, 112, 5984-5992.	1.5	62
23	One step hydrothermal synthesis of TiO2 with variable HCl concentration: Detailed characterization and photocatalytic activity in propene oxidation. Applied Catalysis B: Environmental, 2018, 220, 645-653.	10.8	61
24	Spherical activated carbons for low concentration toluene adsorption. Carbon, 2010, 48, 2625-2633.	5.4	56
25	Hydrothermal and conventional H3PO4 activation of two natural bio-fibers. Carbon, 2012, 50, 3158-3169.	5.4	54
26	Further insights into the activation process of sewage sludge-based precursors by alkaline hydroxides. Chemical Engineering Journal, 2008, 142, 168-174.	6.6	53
27	Photocatalytic activity of TiO2-based materials for the oxidation of propene and benzene at low concentration in presence of humidity. Applied Catalysis B: Environmental, 2008, 84, 691-698.	10.8	45
28	Regeneration of activated carbons saturated with benzene or toluene using an oxygen-containing atmosphere. Chemical Engineering Science, 2010, 65, 2190-2198.	1.9	42
29	Effect of the Preparation Method (Sol-Gel or Hydrothermal) and Conditions on the TiO2 Properties and Activity for Propene Oxidation. Materials, 2018, 11, 2227.	1.3	40
30	lsotropic petroleum pitch as a carbon precursor for the preparation of activated carbons by KOH activation. Carbon, 2009, 47, 2141-2142.	5.4	37
31	HRTEM study of activated carbons prepared by alkali hydroxide activation of anthracite. Carbon, 2004, 42, 1305-1310.	5.4	36
32	Design of carbon supports for metal-catalyzed acetylene hydrochlorination. Nature Communications, 2021, 12, 4016.	5.8	35
33	Factors governing the adsorption of ethanol on spherical activated carbons. Carbon, 2015, 83, 240-249.	5.4	34
34	Usefulness of chemically activated anthracite for the abatement of VOC at low concentrations. Fuel Processing Technology, 2002, 77-78, 331-336.	3.7	33
35	CO2 separation by carbon molecular sieve monoliths prepared from nitrated coal tar pitch. Fuel Processing Technology, 2011, 92, 915-919.	3.7	33
36	Synthesis of high surface area TiO2 nanoparticles by mild acid treatment with HCl or HI for photocatalytic propene oxidation. Applied Catalysis B: Environmental, 2014, 154-155, 285-293.	10.8	32

M ÃNGELES LILLO-RÃ³DENAS

#	Article	IF	CITATIONS
37	Activation of a spherical carbon for toluene adsorption at low concentration. Carbon, 2014, 77, 616-626.	5.4	32
38	SO2 retention on CaO/activated carbon sorbents. Part I: Importance of calcium loading and dispersion. Fuel, 2007, 86, 677-683.	3.4	31
39	Photocatalytic oxidation of propene at low concentration. Applied Catalysis B: Environmental, 2007, 71, 298-309.	10.8	30
40	Amorphous carbon nanofibres inducing high specific capacitance of deposited hydrous ruthenium oxide. Electrochimica Acta, 2009, 54, 7452-7457.	2.6	29
41	Activated Carbons for the Removal of Low-Concentration Gaseous Toluene at the Semipilot Scale. Industrial & Engineering Chemistry Research, 2009, 48, 2066-2075.	1.8	28
42	Photocatalytic oxidation of propene in gas phase at low concentration by optimized TiO2 nanoparticles. Applied Catalysis B: Environmental, 2013, 134-135, 333-343.	10.8	28
43	NO adsorption on activated carbon fibers from iron-containing pitch. Microporous and Mesoporous Materials, 2008, 108, 294-302.	2.2	26
44	Cu/TiO 2 photocatalysts for the conversion of acetic acid into biogas and hydrogen. Catalysis Today, 2017, 287, 78-84.	2.2	26
45	Enhancement of the photocatalytic activity of pelletized TiO2 for the oxidation of propene at low concentration. Applied Catalysis B: Environmental, 2008, 77, 284-293.	10.8	24
46	Spherical Activated Carbons with High Mechanical Strength Directly Prepared from Selected Spherical Seeds. Materials, 2018, 11, 770.	1.3	23
47	TiO2 Modification with Transition Metallic Species (Cr, Co, Ni, and Cu) for Photocatalytic Abatement of Acetic Acid in Liquid Phase and Propene in Gas Phase. Materials, 2019, 12, 40.	1.3	21
48	Chemical Activation of Lignocellulosic Precursors and Residues: What Else to Consider?. Molecules, 2022, 27, 1630.	1.7	19
49	SO2 retention on CaO/activated carbon sorbents. Part II: Effect of the activated carbon support. Fuel, 2008, 87, 2544-2550.	3.4	18
50	Carbon nanofibres as substrates for the preparation of TiO2 nanostructured photocatalysts. Applied Catalysis B: Environmental, 2012, 127, 291-299.	10.8	18
51	Carbonaceous adsorbents for NH3 removal at room temperature. Carbon, 2008, 46, 176-178.	5.4	17
52	Synthesis of TiO2 with Hierarchical Porosity for the Photooxidation of Propene. Molecules, 2017, 22, 2243.	1.7	17
53	The influence of iron chloride addition to the precursor pitch on the formation of activated carbon fibers. Microporous and Mesoporous Materials, 2007, 100, 202-209.	2.2	16
54	Evidence for the presence of cyanide during carbon activation by KOH. Carbon, 2010, 48, 1032-1037.	5.4	15

M Ângeles Lillo-RÃ³denas

#	Article	IF	CITATIONS
55	Removal of odour-causing compounds using carbonaceous adsorbents/catalysts prepared from sewage sludge. Water Science and Technology, 2009, 59, 1371-1376.	1.2	12
56	Cellulose hydrolysis catalysed by mesoporous activated carbons functionalized under mild conditions. SN Applied Sciences, 2019, 1, 1.	1.5	12
57	SO2 retention on CaO/activated carbon sorbents. Part III. Study of the retention and regeneration conditions. Fuel, 2008, 87, 3170-3175.	3.4	10
58	New insights on the direct activation of isotropic petroleum pitch by alkaline hydroxides. Fuel Processing Technology, 2010, 91, 145-149.	3.7	10
59	New Carbon Monoliths for Supercapacitor Electrodes. Looking at the Double Layer. ChemElectroChem, 2017, 4, 1016-1025.	1.7	10
60	Ru Catalysts Supported on Commercial and Biomass-Derived Activated Carbons for the Transformation of Levulinic Acid into γ-Valerolactone under Mild Conditions. Catalysts, 2021, 11, 559.	1.6	9
61	Photocatalytic Oxidation of Propane Using Hydrothermally Prepared Anatase-Brookite-Rutile TiO2 Samples. An In Situ DRIFTS Study. Nanomaterials, 2020, 10, 1314.	1.9	8
62	Mesoporous Activated Carbon Supported Ru Catalysts to Efficiently Convert Cellulose into Sorbitol by Hydrolytic Hydrogenation. Energies, 2020, 13, 4394.	1.6	7
63	Novel monoliths prepared from sucrose avoiding binder and thermal treatment. Microporous and Mesoporous Materials, 2019, 284, 78-81.	2.2	6
64	Enhancement of the TiO2 photoactivity for propene oxidation by carbon incorporation using saccharose in hydrothermal synthesis. Journal of Environmental Chemical Engineering, 2021, 9, 104941.	3.3	6
65	Comparison of particulate matter emission and soluble matter collected from combustion cigarettes and heated tobacco products using a setup designed to simulate puffing regimes. Chemical Engineering Journal Advances, 2021, 8, 100144.	2.4	6
66	TiO2 and TiO2-Carbon Hybrid Photocatalysts for Diuron Removal from Water. Catalysts, 2021, 11, 457.	1.6	5
67	Impact of TiO2 Surface Defects on the Mechanism of Acetaldehyde Decomposition under Irradiation of a Fluorescent Lamp. Catalysts, 2021, 11, 1281.	1.6	5
68	Use of thermoplastic polyurethane elastomers in the preparation of fabric/activated carbon composites. Journal of Applied Polymer Science, 2010, 118, 3509-3517.	1.3	4
69	Advantages of the Incorporation of Luffa-Based Activated Carbon to Titania for Improving the Removal of Methylene Blue from Aqueous Solution. Applied Sciences (Switzerland), 2021, 11, 7607.	1.3	4
70	Understanding the rate performance of microporous carbons in aqueous electrolytes. Electrochimica Acta, 2020, 350, 136408.	2.6	3
71	Solid matter and soluble compounds collected from cigarette smoke and heated tobacco product aerosol using a laboratory designed puffing setup. Environmental Research, 2022, 206, 112619.	3.7	3
72	Controlling Porosity to Improve Activated Carbon Applications. NATO Science for Peace and Security Series C: Environmental Security, 2008, , 97-106.	0.1	2

#	Article	F	CITATIONS
73	INORGANIC CHEMISTRY TEACHING MATERIALS FOR MOBILE LEARNING AND/OR "BRING YOUR OWN DEVICEâ€ STRATEGY. EDULEARN Proceedings, 2017, , .	b.o	1