Raghavan B Sunoj

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5498893/raghavan-b-sunoj-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

160 62 5,334 43 h-index g-index citations papers 6.35 176 5,974 7.1 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
160	Molecular insights into chirality transfer from double axially chiral phosphoric acid in a synergistic enantioselective intramolecular amination <i>Chemical Science</i> , 2022 , 13, 1323-1334	9.4	4
159	Machine learning studies on asymmetric relay Heck reaction-Potential avenues for reaction development <i>Journal of Chemical Physics</i> , 2022 , 156, 114303	3.9	2
158	Iridium-Catalyzed Regioselective Borylation through C-H Activation and the Origin of Ligand-Dependent Regioselectivity Switching. <i>Journal of Organic Chemistry</i> , 2021 , 86, 15618-15630	4.2	O
157	Tale of the Breslow intermediate, a central player in N-heterocyclic carbene organocatalysis: then and now. <i>Chemical Science</i> , 2021 , 12, 7973-7992	9.4	21
156	On the question of steric repulsion versus noncovalent attractive interactions in chiral phosphoric acid catalyzed asymmetric reactions. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 18936-18950	3.6	2
155	Pd-Catalyzed EC(sp)-H Fluorination of Free Amines. <i>Journal of the American Chemical Society</i> , 2020 , 142, 9966-9974	16.4	35
154	Insights on Absolute and Relative Stereocontrol in Stereodivergent Cooperative Catalysis. <i>Journal of the American Chemical Society</i> , 2020 , 142, 9612-9624	16.4	12
153	Palladium-Catalyzed -C-H Allylation of Arenes: A Unique Combination of a Pyrimidine-Based Template and Hexafluoroisopropanol. <i>Journal of the American Chemical Society</i> , 2020 , 142, 12453-1246	6 ^{16.4}	43
152	Energetics of Dynamic Kinetic Asymmetric Transformation in SuzukiMiyaura Coupling. <i>ACS Catalysis</i> , 2020 , 10, 4349-4360	13.1	3
151	Is silver a mere terminal oxidant in palladium catalyzed C-H bond activation reactions?. <i>Chemical Science</i> , 2020 , 11, 208-216	9.4	29
150	A unified machine-learning protocol for asymmetric catalysis as a proof of concept demonstration using asymmetric hydrogenation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 1339-1345	11.5	30
149	Unraveling the Importance of Noncovalent Interactions in Asymmetric Hydroformylation Reactions. Journal of the American Chemical Society, 2020 , 142, 17079-17092	16.4	15
148	Mechanistic insights into rhodium-catalyzed enantioselective allylic alkylation for quaternary stereogenic centers. <i>Chemical Science</i> , 2020 , 12, 2527-2539	9.4	2
147	Hypercoordinate iodine for catalytic asymmetric diamination of styrene: insights into the mechanism, role of solvent, and stereoinduction. <i>Chemical Science</i> , 2019 , 10, 7082-7090	9.4	8
146	Cooperativity and serial ligand catalysis in an allylic amination reaction by Pd(ii)-bis-sulfoxide and Brlisted acids. <i>Organic and Biomolecular Chemistry</i> , 2019 , 17, 7723-7734	3.9	1
145	Mechanism and Origin of Enantioselectivity in Nickel-Catalyzed Alkyl-Alkyl Suzuki Coupling Reaction. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 6701-6710	2.8	9
144	Computational asymmetric catalysis: On the origin of stereoselectivity in catalytic reactions. <i>Advances in Physical Organic Chemistry</i> , 2019 , 53, 1-27	0.3	1

143	On the activation of hypercoordinate iodine(iii) compounds for reactions of current interest. <i>Dalton Transactions</i> , 2019 , 48, 4086-4093	4.3	8	
142	Insights into the role of noncovalent interactions in distal functionalization of the aryl C(sp)-H bond. <i>Chemical Science</i> , 2019 , 10, 3826-3835	9.4	17	
141	Harnessing Noncovalent Interactions in Dual-Catalytic Enantioselective Heck-Matsuda Arylation. Journal of the American Chemical Society, 2019 , 141, 998-1009	16.4	46	
140	Rhodium Catalyzed Asymmetric Hydroamination of Internal Alkynes with Indoline: Mechanism, Origin of Enantioselectivity, and Role of Additives. <i>Journal of Organic Chemistry</i> , 2018 , 83, 2627-2639	4.2	11	
139	Insights on the Origin of Regiodivergence in the Parallel Kinetic Resolution of rac-Aziridines Using a Chiral Lanthanum II trium Bimetallic Catalyst. ACS Catalysis, 2018, 8, 7633-7644	13.1	7	
138	A quantification scheme for non-covalent interactions in the enantio-controlling transition states in asymmetric catalysis. <i>Organic and Biomolecular Chemistry</i> , 2018 , 16, 5643-5652	3.9	7	
137	Two chiral catalysts in action: insights into cooperativity and stereoselectivity in proline and cinchona-thiourea dual organocatalysis. <i>Chemical Science</i> , 2018 , 9, 8738-8747	9.4	19	
136	Mechanistic Insights on Orthogonal Selectivity in Heterocycle Synthesis. ACS Catalysis, 2018, 8, 10111-	101318	16	
135	Machine learning for predicting product distributions in catalytic regioselective reactions. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 18311-18318	3.6	22	
134	Origin of stereoselectivity in the amination of alcohols using cooperative asymmetric dual catalysis involving chiral counter-ions. <i>Chemical Science</i> , 2018 , 9, 6126-6133	9.4	22	
133	Hypercoordinate iodine(III) promoted reactions and catalysis: an update on current mechanistic understanding. <i>Wiley Interdisciplinary Reviews: Computational Molecular Science</i> , 2017 , 7, e1299	7.9	27	
132	Enantioselective Heck-Matsuda Arylations through Chiral Anion Phase-Transfer of Aryl Diazonium Salts. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 5806-5811	16.4	45	
131	Reversing Enantioselectivity Using Noncovalent Interactions in Asymmetric Dearomatization of Naphthols: The Power of 3,3 © substituents in Chiral Phosphoric Acid Catalysts. <i>Organic Letters</i> , 2017 , 19, 2354-2357	6.2	25	
130	Hypercoordinate Iodine Catalysts in Enantioselective Transformation: The Role of Catalyst Folding in Stereoselectivity. <i>ACS Catalysis</i> , 2017 , 7, 4189-4196	13.1	35	
129	Enantioselective HeckMatsuda Arylations through Chiral Anion Phase-Transfer of Aryl Diazonium Salts. <i>Angewandte Chemie</i> , 2017 , 129, 5900-5905	3.6	10	
128	Catalytic Arene meta-Cℍ Functionalization Exploiting a Quinoline-Based Template. <i>ACS Catalysis</i> , 2017 , 7, 3162-3168	13.1	63	
127	Origin of Stereoselectivity in Cooperative Asymmetric Catalysis Involving N-Heterocyclic Carbenes and Lewis Acids toward the Synthesis of Spirooxindole Lactone. <i>ACS Catalysis</i> , 2017 , 7, 530-537	13.1	63	
126	Transposed Patern 即即 Reaction. <i>Journal of the American Chemical Society</i> , 2017 , 139, 655-662	16.4	31	

125	Experimental and Computational Studies on Remote EC(sp3) III Silylation and Germanylation of Aliphatic Carboxamides. <i>ACS Catalysis</i> , 2017 , 7, 8171-8175	13.1	76
124	Mechanism and reactivity in the Morita-Baylis-Hillman reaction: the challenge of accurate computations. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 30647-30657	3.6	51
123	Asymmetric Dual Chiral Catalysis using Iridium Phosphoramidites and Diarylprolinol Silyl Ethers: Insights into Stereodivergence. <i>ACS Catalysis</i> , 2017 , 7, 6675-6685	13.1	13
122	Aliphatic C(sp)-H Bond Activation Using Nickel Catalysis: Mechanistic Insights on Regioselective Arylation. <i>Journal of Organic Chemistry</i> , 2017 , 82, 9619-9626	4.2	24
121	Exploring the Mechanism and Stereoselectivity in Chiral Cinchona-Catalyzed Heterodimerization of Ketenes. <i>Journal of Organic Chemistry</i> , 2017 , 82, 13449-13458	4.2	6
120	Mechanistic Insights and the Origin of Regioselective Borylation in an Iridium-Catalyzed Alkyl C(sp3)田 Bond Functionalization. <i>Organometallics</i> , 2017 , 36, 151-158	3.8	13
119	Asymmetric Cooperative Catalysis in a Three-Component Reaction: Mechanism and Origin of Enantio- and Diastereoselectivities. <i>Organic Letters</i> , 2016 , 18, 3746-9	6.2	8
118	Mechanism and Stereoselectivity in an Asymmetric N-Heterocyclic Carbene-Catalyzed Carbon-Carbon Bond Activation Reaction. <i>Organic Letters</i> , 2016 , 18, 5932-5935	6.2	24
117	Directing group assisted -hydroxylation by C-H activation. <i>Chemical Science</i> , 2016 , 7, 3147-3153	9.4	107
116	Keto-Enol Thermodynamics of Breslow Intermediates. <i>Journal of the American Chemical Society</i> , 2016 , 138, 5044-51	16.4	33
115	PalladiumBilver Cooperativity in an Aryl Amination Reaction through CH Functionalization. <i>ACS Catalysis</i> , 2016 , 6, 696-708	13.1	61
114	Role of Lewis acid additives in a palladium catalyzed directed C-H functionalization reaction of benzohydroxamic acid to isoxazolone. <i>Organic and Biomolecular Chemistry</i> , 2016 , 15, 246-255	3.9	8
113	Cooperative Asymmetric Catalysis by N-Heterocyclic Carbenes and Brflsted Acid in £Lactam Formation: Insights into Mechanism and Stereoselectivity. <i>ACS Catalysis</i> , 2016 , 6, 3118-3126	13.1	48
112	Transition State Models for Understanding the Origin of Chiral Induction in Asymmetric Catalysis. <i>Accounts of Chemical Research</i> , 2016 , 49, 1019-28	24.3	92
111	Origin of Kinetic Resolution of Hydroxy Esters through Catalytic Enantioselective Lactonization by Chiral Phosphoric Acids. <i>Organic Letters</i> , 2016 , 18, 3730-3	6.2	11
110	Photoreactions with a Twist: Atropisomerism-Driven Divergent Reactivity of Enones with UV and Visible Light. <i>Chemistry - A European Journal</i> , 2016 , 22, 11339-48	4.8	5
109	A phosphomide based PNP ligand, 2,6-{Ph2PC(O)}2(C5H3N), showing PP, PNP and PNO coordination modes. <i>Dalton Transactions</i> , 2015 , 44, 4167-79	4.3	13
108	Synthesis, characterization and DFT studies of 1, 1?-Bis(diphenylphosphino)ferrocene substituted diiron complexes: Bioinspired [FeFe] hydrogenase model complexes. <i>Journal of Chemical Sciences</i> , 2015 , 127, 557-563	1.8	12

(2013-2015)

107	Mechanistic Studies on Stereoselective Organocatalytic Direct ﷺ Activation in an Aliphatic Chain by Chiral N-Heterocyclic Carbenes. <i>ACS Catalysis</i> , 2015 , 5, 5794-5802	13.1	33
106	Origin of Stereodivergence in Cooperative Asymmetric Catalysis with Simultaneous Involvement of Two Chiral Catalysts. <i>Journal of the American Chemical Society</i> , 2015 , 137, 15712-22	16.4	66
105	Mechanistic Insights on Cooperative Catalysis through Computational Quantum Chemical Methods. <i>ACS Catalysis</i> , 2015 , 5, 480-503	13.1	78
104	Deciphering the Origin of Stereoinduction in Cooperative Asymmetric Catalysis Involving Pd(II) and a Chiral Brfisted Acid. <i>Organic Letters</i> , 2015 , 17, 2874-7	6.2	11
103	Asymmetric Dual-Catalytic Cascade by Chiral N-Heterocyclic Carbene and Quinuclidine: Mechanism and Origin of Enantioselectivity in Benzofuranone Formation. <i>ACS Catalysis</i> , 2015 , 5, 1596-1603	13.1	42
102	Axial coordination dichotomy in dirhodium carbenoid catalysis: a curious case of cooperative asymmetric dual-catalytic approach toward amino esters. <i>Journal of Organic Chemistry</i> , 2015 , 80, 2192-7	,4.2	23
101	Non-innocent additives in a palladium(II)-catalyzed C-H bond activation reaction: insights into multimetallic active catalysts. <i>Journal of the American Chemical Society</i> , 2014 , 136, 5535-8	16.4	99
100	Importance of ligand exchanges in Pd(II)-Brflsted acid cooperative catalytic approach to spirocyclic rings. <i>Journal of the American Chemical Society</i> , 2014 , 136, 15998-6008	16.4	50
99	The mechanism of catalytic methylation of 2-phenylpyridine using di-tert-butyl peroxide. <i>Dalton Transactions</i> , 2014 , 43, 10183-201	4.3	12
98	Mechanistic insights on cooperative asymmetric multicatalysis using chiral counterions. <i>Journal of Organic Chemistry</i> , 2014 , 79, 7600-6	4.2	36
97	The mechanism of the NHC catalyzed aza-Morita-Baylis-Hillman reaction: insights into a new substrate-catalyzed bimolecular pathway. <i>Organic and Biomolecular Chemistry</i> , 2014 , 12, 2176-9	3.9	24
96	Axially chiral imidodiphosphoric Acid catalyst for asymmetric sulfoxidation reaction: insights on asymmetric induction. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 4432-6	16.4	65
95	Rational design of catalysts for asymmetric diamination reaction using transition state modeling. <i>Organic and Biomolecular Chemistry</i> , 2014 , 12, 2745-53	3.9	24
94	Deciphering the origin of cooperative catalysis by dirhodium acetate and chiral spiro phosphoric acid in an asymmetric amination reaction. <i>Chemical Communications</i> , 2014 , 50, 14639-42	5.8	23
93	Mechanistic insights on iodine(III) promoted metal-free dual C-H activation involved in the formation of a spirocyclic bis-oxindole. <i>Organic Letters</i> , 2014 , 16, 6224-7	6.2	34
92	Axially Chiral Imidodiphosphoric Acid Catalyst for Asymmetric Sulfoxidation Reaction: Insights on Asymmetric Induction. <i>Angewandte Chemie</i> , 2014 , 126, 4521-4525	3.6	15
91	Mechanism and stereoselectivity of biologically important oxygenation reactions of the 7-dehydrocholesterol radical. <i>Journal of Organic Chemistry</i> , 2013 , 78, 7023-9	4.2	7
90	Mechanism of catalytic functionalization of primary C-H bonds using a silylation strategy. <i>Organic Letters</i> , 2013 , 15, 4066-9	6.2	26

89	Synthesis of 3,3-Disubstituted Oxindoles by Palladium-Catalyzed Asymmetric Intramolecular ⊞Arylation of Amides: Reaction Development and Mechanistic Studies. <i>Chemistry - A European Journal</i> , 2013 , 19, 11916-27	4.8	74
88	Rationalizing Reactivity and Selectivity in Aminocatalytic Reactions 2013 , 463-494		
87	N-heterocyclic carbene catalyzed asymmetric intermolecular Stetter reaction: origin of enantioselectivity and role of counterions. <i>Organic Letters</i> , 2013 , 15, 5040-3	6.2	45
86	Cyclopalladation of dimesityl selenide: synthesis, reactivity, structural characterization, isolation of an intermediate complex with C-HIP dintra-molecular interaction and computational studies. <i>Dalton Transactions</i> , 2013 , 42, 10828-37	4.3	11
85	On the mechanism of the dehydroaromatization of hexane to benzene by an iridium pincer catalyst. <i>Chemistry - A European Journal</i> , 2013 , 19, 4069-77	4.8	18
84	New bisphosphomide ligands, 1,3-phenylenebis((diphenylphosphino)methanone) and (2-bromo-1,3-phenylene)bis((diphenylphosphino)methanone): synthesis, coordination behavior, DFT calculations and catalytic studies. <i>Dalton Transactions</i> , 2013 , 42, 11385-99	4.3	19
83	Mechanistic insights on organocatalytic enantioselective decarboxylative protonation by epicinchona-thiourea hybrid derivatives. <i>Journal of Organic Chemistry</i> , 2012 , 77, 10525-36	4.2	29
82	Refined transition-state models for proline-catalyzed asymmetric Michael reactions under basic and base-free conditions. <i>Journal of Organic Chemistry</i> , 2012 , 77, 10516-24	4.2	20
81	Mechanism of cooperative catalysis in a Lewis acid promoted nickel-catalyzed dual C-H activation reaction. <i>Organic Letters</i> , 2012 , 14, 4584-7	6.2	26
80	Noninnocent role of N-methyl pyrrolidinone in thiazolidinethione-promoted asymmetric aldol reactions. <i>Organic Letters</i> , 2012 , 14, 5752-5	6.2	15
79	Revisiting sesquiterpene biosynthetic pathways leading to santalene and its analogues: a comprehensive mechanistic study. <i>Organic and Biomolecular Chemistry</i> , 2012 , 10, 7996-8006	3.9	13
78	Conformational mapping and energetics of saccharide-aromatic residue interactions: implications for the discrimination of anomers and epimers and in protein engineering. <i>Organic and Biomolecular Chemistry</i> , 2012 , 10, 4186-200	3.9	11
77	Mechanistic insights on platinum- and palladium-pincer catalyzed coupling and cyclopropanation reactions between olefins. <i>Dalton Transactions</i> , 2012 , 41, 8430-40	4.3	17
76	Microsolvated transition state models for improved insight into chemical properties and reaction mechanisms. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 12715-36	3.6	71
75	On the origin of regio- and stereoselectivity in singlet oxygen addition to enecarbamates. <i>Journal of Organic Chemistry</i> , 2012 , 77, 2474-85	4.2	12
74	Role of Explicit Solvents in Palladium(II)-Catalyzed Alkoxylation of Arenes: An Interesting Paradigm for Preferred Outer-Sphere Reductive Elimination over Inner-Sphere Pathway. <i>Organometallics</i> , 2012 , 31, 6466-6481	3.8	38
73	Exploration of CHImmediated stacking interactions in saccharide: aromatic residue complexes through conformational sampling. <i>Carbohydrate Research</i> , 2012 , 361, 133-40	2.9	16
72	Origin of stereoselectivity in a chiral N-heterocyclic carbene-catalyzed desymmetrization of substituted cyclohexyl 1,3-diketones. <i>Organic Letters</i> , 2012 , 14, 2810-3	6.2	40

(2010-2012)

71	Mechanistic insights into the role of chiral ligands in asymmetric diamination reactions. <i>Chemistry - A European Journal</i> , 2012 , 18, 7045-9	4.8	20
70	Mechanistic insights on N-heterocyclic carbene-catalyzed annulations: the role of base-assisted proton transfers. <i>Journal of Organic Chemistry</i> , 2011 , 76, 5606-13	4.2	84
69	Quantification of binding affinities of essential sugars with a tryptophan analogue and the ubiquitous role of C-HIIIInteractions. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 6517-30	3.6	24
68	A computational insight into a metal mediated pathway for the ring-opening polymerization (ROP) of lactides by an ionic {(NHC)2Ag}(+)X(-) (X = halide) type N-heterocyclic carbene (NHC) complex. <i>Dalton Transactions</i> , 2011 , 40, 10156-61	4.3	20
67	Stereocontrol in proline-catalyzed asymmetric amination: a comparative assessment of the role of enamine carboxylic acid and enamine carboxylate. <i>Chemical Communications</i> , 2011 , 47, 5759-61	5.8	29
66	Palladium(II)-catalyzed direct alkoxylation of arenes: evidence for solvent-assisted concerted metalation deprotonation. <i>Organic Letters</i> , 2011 , 13, 4802-5	6.2	58
65	Mechanism and electronic effects in nitrogen ylide-promoted asymmetric aziridination reaction. <i>Organic and Biomolecular Chemistry</i> , 2011 , 9, 2123-32	3.9	8
64	Proline-derived organocatalysis and synergism between theory and experiments. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011 , 1, 920-931	7.9	24
63	Chemo-, regio-, and diastereoselectivity preferences in the reaction of a sulfur ylide with a dienal and an enone. <i>Organic and Biomolecular Chemistry</i> , 2011 , 9, 1642-52	3.9	6
62	[5+3] Cycloaddition of 3-Oxidopyrylium: A Novel Route to Functionalized Cyclooctanoids from Furans. <i>Synthesis</i> , 2010 , 2010, 320-328	2.9	6
61	Transition state models for probing stereoinduction in Evans chiral auxiliary-based asymmetric aldol reactions. <i>Journal of the American Chemical Society</i> , 2010 , 132, 12319-30	16.4	48
60	Organoselenium chemistry: role of intramolecular interactions. <i>Chemical Reviews</i> , 2010 , 110, 4357-416	68.1	377
59	The pivotal role of chelation as a stereochemical control element in non-Evans anti aldol product formation. <i>Organic Letters</i> , 2010 , 12, 2868-71	6.2	20
58	TiCl4-promoted Baylis-Hillman reaction: mechanistic rationale toward product distribution and stereoselectivity. <i>Journal of Organic Chemistry</i> , 2010 , 75, 359-67	4.2	21
57	Ni-, Pd-, or Pt-catalyzed ethylene dimerization: a mechanistic description of the catalytic cycle and the active species. <i>Organic and Biomolecular Chemistry</i> , 2010 , 8, 1040-51	3.9	19
56	Importance of the nature of Bubstituents in pyrrolidine organocatalysts in asymmetric Michael additions. <i>Journal of Organic Chemistry</i> , 2010 , 75, 7310-21	4.2	30
55	Enamine versus oxazolidinone: what controls stereoselectivity in proline-catalyzed asymmetric aldol reactions?. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 6373-7	16.4	91
54	Design of Catalysts for Asymmetric Organic Reactions Through Density Functional Calculations. Challenges and Advances in Computational Chemistry and Physics, 2010, 107-136	0.7	2

53	On the origin of reversible hydrogen activation by phosphine-boranes. <i>Chemistry - A European Journal</i> , 2009 , 15, 12846-55	4.8	39
52	On the relative preference of enamine/iminium pathways in an organocatalytic Michael addition reaction. <i>Chemistry - an Asian Journal</i> , 2009 , 4, 714-24	4.5	24
51	Mechanistic insights and the role of cocatalysts in Aza-Morita-Baylis-hillman and Morita-Baylis-Hillman reactions. <i>Journal of Organic Chemistry</i> , 2009 , 74, 6936-43	4.2	62
50	Conformational and isomeric preferences of six-membered inorganic heterocycles [EtNP(E)(OR)]3 (E = Lone Pair, O, S, or Se): a synthetic, spectroscopic, structural, and computational study. <i>Inorganic Chemistry</i> , 2009 , 48, 2048-59	5.1	9
49	Synthesis of azoaromatic dyes via redox driven C-N bond fusion. <i>Organic Letters</i> , 2009 , 11, 3218-21	6.2	21
48	On the origins of kinetic resolution of cyclohexane-1,2-diols through stereoselective acylation by chiral tetrapeptides. <i>Organic Letters</i> , 2009 , 11, 3242-5	6.2	39
47	Na(I)/Cu(I-II) heterometallic cages interconnected by unusual linear 2-coordinate OCN-Cu(I)-NCO links: synthesis, structural, magnetostructural correlation and computational studies. <i>Dalton Transactions</i> , 2009 , 9510-9	4.3	20
46	Unraveling high precision stereocontrol in a triple cascade organocatalytic reaction. <i>Organic and Biomolecular Chemistry</i> , 2008 , 6, 3921-9	3.9	42
45	Enantio- and diastereoselectivities in chiral sulfur ylide promoted asymmetric aziridination reactions. <i>Journal of Organic Chemistry</i> , 2008 , 73, 8163-74	4.2	40
44	Face-selective Diels-Alder reactions between unsymmetrical cyclohexadienes and symmetric trans-dienophile: an experimental and computational investigation. <i>Journal of Organic Chemistry</i> , 2008 , 73, 435-44	4.2	10
43	Probing intramolecular interactions in arylselenides using a property descriptor based approach. Journal of Physical Chemistry A, 2008 , 112, 8797-803	2.8	9
42	Mixed-valent metals bridged by a radical ligand: fact or fiction based on structure-oxidation state correlations. <i>Journal of the American Chemical Society</i> , 2008 , 130, 3532-42	16.4	97
41	The role of noninnocent solvent molecules in organocatalyzed asymmetric Michael addition reactions. <i>Chemistry - A European Journal</i> , 2008 , 14, 10472-85	4.8	49
40	Water catalysis in the Morita-Baylis-Hillman reaction: a mechanistic perspective. <i>Chemistry - A European Journal</i> , 2008 , 14, 10530-4	4.8	60
39	Density functional theory investigations on sulfur ylide promoted cyclopropanation reactions: insights on mechanism and diastereoselection issues. <i>Journal of Organic Chemistry</i> , 2007 , 72, 331-41	4.2	33
38	Insights on co-catalyst-promoted enamine formation between dimethylamine and propanal through ab initio and density functional theory study. <i>Journal of Organic Chemistry</i> , 2007 , 72, 8202-15	4.2	67
37	Computational investigations on the general reaction profile and diastereoselectivity in sulfur ylide promoted aziridination. <i>Chemistry - A European Journal</i> , 2007 , 13, 4805-15	4.8	34
36	Valence-State Distribution in the Ruthenium o-Quinonoid Systems [Ru(trpy)(Cl)(L1)]+ and [Ru(trpy)(Cl)(L2)]+ (L1 = o-Iminobenzoquinone, L2 = o-Diiminobenzoquinone; trpy = 2.22-62.22-Terpyridine). Furopean Journal of Inorganic Chemistry. 2007, 2007, 314-323	2.3	34

35	Intramolecular nonbonding interactions in organoseleniums: Quantification using a computational thermochemical approach. <i>Computational and Theoretical Chemistry</i> , 2007 , 809, 145-152		5
34	Multiple one-electron oxidation and reduction of trinuclear bis(2,4-pentanedionato)ruthenium complexes with substituted diquinoxalino[2,3-a:2?,3?-c]phenazine ligands. <i>Polyhedron</i> , 2007 , 26, 3409-3	3418	20
33	Bicyclic proline analogues as organocatalysts for stereoselective aldol reactions: an in silico DFT study. <i>Organic and Biomolecular Chemistry</i> , 2007 , 5, 1287-94	3.9	64
32	Ab initio and density functional theory evidence on the rate-limiting step in the Morita-Baylis-Hillman reaction. <i>Organic Letters</i> , 2007 , 9, 4873-6	6.2	71
31	A Cationic (N-Heterocyclic carbene)silver Complex as Catalyst for Bulk Ring-Opening Polymerization of L-Lactides. <i>European Journal of Inorganic Chemistry</i> , 2006 , 2006, 2975-2984	2.3	84
30	An Experimental and Density Functional Theory Approach Towards the Establishment of Preferential Metal- or Ligand-Based Electron-Transfer Processes in Large Quinonoid-Bridged Diruthenium Complexes [{(aap)2Ru}2(BL2¶n+ (aap = 2-Arylazopyridine). European Journal of	2.3	31
29	Retro Diels-Alder reaction under mild conditions: experimental and theoretical studies. <i>Organic and Biomolecular Chemistry</i> , 2006 , 4, 1854-6	3.9	21
28	Density functional theory and atoms-in-molecule study on the role of two-electron stabilizing interactions in retro Diels-Alder reaction of cycloadducts derived from substituted cyclopentadiene and p-benzoquinone. <i>Organic and Biomolecular Chemistry</i> , 2006 , 4, 3923-30	3.9	9
27	Anomalous excited-state dynamics of lucifer yellow CH in solvents of high polarity: evidence for an intramolecular proton transfer. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 5585-91	2.8	23
26	Quantification of intramolecular nonbonding interactions in organochalcogens. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 5942-7	2.8	44
25	Experimental and theoretical studies of a silver complex of O-functionalized N-heterocyclic carbene. <i>Journal of Organometallic Chemistry</i> , 2006 , 691, 3797-3805	2.3	38
24	Isomeric ruthenium terpyridine complexes [Ru(trpy)(L)Cl]n+ containing the unsymmetrically bidentate acceptor L=3-amino-6-(3,5-dimethylpyrazol-1-yl)-1,2,4,5-tetrazine. Synthesis, structures, electrochemistry, spectroscopy and DFT calculations. <i>Dalton Transactions</i> , 2005 , 1188-94	4.3	35
23	A new coordination mode of the photometric reagent glyoxalbis(2-hydroxyanil) (H2gbha): bis-bidentate bridging by gbha2- in the redox series [(mu-gbha)[Ru(acac)2]2]n (n = -2, -1, 0, +1, +2), including a radical-bridged diruthenium(III) and a Ru(III)/Ru(IV) intermediate. <i>Inorganic Chemistry</i> ,	5.1	46
22	2005 , 44, 8715-22 o-hydroxylmethylphenylchalcogens: synthesis, intramolecular nonbonded chalcogenOH interactions, and glutathione peroxidase-like activity. <i>Journal of Organic Chemistry</i> , 2005 , 70, 9237-47	4.2	127
21	Intramolecular interactions between chalcogen atoms: organoseleniums derived from 1-bromo-4-tert-butyl-2,6-di(formyl)benzene. <i>Journal of Organic Chemistry</i> , 2005 , 70, 3693-704	4.2	54
20	Theoretical and experimental evidence for a new kind of spin-coupled singlet species: isomeric mixed-valent complexes bridged by a radical anion ligand. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 5655-8	16.4	97
19	Theoretische und experimentelle Hinweise auf einen neuen Typ spingekoppelter Singulett-Spezies: isomere gemischtvalente Komplexe mit verbr\(^{\mathbb{I}}\)kendem Radikalanion-Liganden. \(Angewandte\) \(Chemie, \mathbb{2005}, 117, 5800-5803\)	3.6	43
18	2,5-Dioxido-1,4-benzoquinonediimine (H2L2-), a hydrogen-bonding noninnocent bridging ligand related to aminated topaquinone: different oxidation state distributions in complexes [{(bpy)2Ru}2(mu-H2L)]n (n=0,+,2+,3+,4+) and [{(acac)2Ru}2(mu-H2L)]m (m=2-,-,0,+,2+). <i>Chemistry - A</i>	4.8	83

17	Synthesis of C3-Symmetric Nano-Sized Polyaromatic Compounds by Trimerization and SuzukiMiyaura Cross-Coupling Reactions. <i>European Journal of Organic Chemistry</i> , 2004 , 2004, 4003-401	3 ^{3.2}	68
16	Enhanced diastereoselectivity via confinement: photoisomerization of 2,3-diphenylcyclopropane-1-carboxylic acid derivatives within zeolites. <i>Journal of Organic Chemistry</i> , 2004 , 69, 6533-47	4.2	31
15	Enhanced diastereoselectivity via confinement: diastereoselective photoisomerization of 2,3-diphenyl-1-benzoylcyclopropane derivatives within zeolites. <i>Journal of Organic Chemistry</i> , 2004 , 69, 5528-36	4.2	28
14	Photochemistry of 1-(N,N-diethylamino)diazen-1-ium-1,2-diolate: an experimental and computational investigation. <i>Journal of the American Chemical Society</i> , 2003 , 125, 14934-40	16.4	12
13	A new approach to evaluating the extent of Michael adduct formation to PAH quinones: tetramethylammonium hydroxide (TMAH) thermochemolysis with GC/MS. <i>Chemical Research in Toxicology</i> , 2003 , 16, 1484-92	4	17
12	Alkali Ion-Controlled Excited-State Ordering of Acetophenones Included in Zeolites: Emission, Solid-State NMR, and Computational Studies <i>Journal of Physical Chemistry A</i> , 2003 , 107, 3187-3198	2.8	18
11	Direct and sensitized (energy and electron transfer) geometric isomerization of stilbene within zeolites: a comparison between solution and zeolite as reaction media. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2002 , 153, 41-53	4.7	17
10	Rearrangement pathways of 2-hydroxy-2-methylpropylidene: an experimental and computational study. <i>Journal of Organic Chemistry</i> , 2002 , 67, 3257-65	4.2	10
9	Light-induced geometric isomerization of 1,2-diphenylcyclopropanes included within Y zeolites: role of cation-guest binding. <i>Journal of Organic Chemistry</i> , 2002 , 67, 8711-20	4.2	25
8	Controlling the reactive state through cation binding: photochemistry of enones within zeolites. <i>Tetrahedron Letters</i> , 2001 , 42, 2079-2083	2	11
7	Configuration interaction and density functional study of the influence of lithium cation complexation on vertical and adiabatic excitation energies of enones. <i>Journal of Computational Chemistry</i> , 2001 , 22, 1598-1604	3.5	12
6	Singlet Oxygen Mediated Oxidation of Olefins within Zeolites: Selectivity and Complexities. <i>Tetrahedron</i> , 2000 , 56, 6927-6943	2.4	44
5	CationInteraction Controlled Selective Geometric Photoisomerization of Diphenylcyclopropane. <i>Journal of the American Chemical Society</i> , 2000 , 122, 4815-4816	16.4	50
4	Cation-Enteraction Promoted Aggregation of Aromatic Molecules and Energy Transfer within Y Zeolites. <i>Langmuir</i> , 2000 , 16, 4912-4921	4	44
3	Modulation of Lifetimes and Diastereomeric Discrimination in Triplet-Excited Substituted Butane-1,4-diones through Intramolecular Charge-Transfer Quenching. <i>Journal of the American Chemical Society</i> , 1999 , 121, 3093-3103	16.4	25
2	Coming of Age of Computational Chemistry from a Resilient Past to a Promising Future. <i>Israel Journal of Chemistry</i> ,	3.4	2
1	Role of Additives in Transition Metal Catalyzed CH Bond Activation Reactions: A Computational Perspective. <i>Topics in Catalysis</i> ,1	2.3	3