Asha Kallianpur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5498541/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Isofurans and Isoprostanes as Potential Markers of Delayed Cerebral Ischemia Following Aneurysmal Subarachnoid Hemorrhage: A Prospective Observational Study. Neurocritical Care, 2022, 36, 202-207.	2.4	2
2	Plasma Citrate and Succinate Are Associated With Neurocognitive Impairment in Older People With HIV. Clinical Infectious Diseases, 2021, 73, e765-e772.	5.8	6
3	Mitochondrial DNA haplogroups and domain-specific neurocognitive performance in adults with HIV. Journal of NeuroVirology, 2021, 27, 557-567.	2.1	2
4	Higher CSF Ferritin Heavy-Chain (Fth1) and Transferrin Predict Better Neurocognitive Performance in People with HIV. Molecular Neurobiology, 2021, 58, 4842-4855.	4.0	2
5	Network medicine links SARS-CoV-2/COVID-19 infection to brain microvascular injury and neuroinflammation in dementia-like cognitive impairment. Alzheimer's Research and Therapy, 2021, 13, 110.	6.2	108
6	Multimodal single-cell omics analysis identifies epithelium–immune cell interactions and immune vulnerability associated with sex differences in COVID-19. Signal Transduction and Targeted Therapy, 2021, 6, 292.	17.1	13
7	Replication of European hypertension associations in a case-control study of 9,534 African Americans. PLoS ONE, 2021, 16, e0259962.	2.5	4
8	A Haptoglobin Exon Copy Number Variant Associates With HIV-Associated Neurocognitive Impairment in European and African-Descent Populations. Frontiers in Genetics, 2021, 12, 756685.	2.3	1
9	Iron-regulatory genes are associated with Neuroimaging measures in HIV infection. Brain Imaging and Behavior, 2020, 14, 2037-2049.	2.1	5
10	New insights into genetic susceptibility of COVID-19: an ACE2 and TMPRSS2 polymorphism analysis. BMC Medicine, 2020, 18, 216.	5.5	304
11	A candidate gene study of intermediate histopathological phenotypes in HIV-associated neurocognitive disorders. Journal of NeuroVirology, 2020, 26, 496-508.	2.1	1
12	HIV Infection and Neurocognitive Disorders in the Context of Chronic Drug Abuse: Evidence for Divergent Findings Dependent upon Prior Drug History. Journal of NeuroImmune Pharmacology, 2020, 15, 715-728.	4.1	20
13	A network medicine approach to investigation and population-based validation of disease manifestations and drug repurposing for COVID-19. PLoS Biology, 2020, 18, e3000970.	5.6	139
14	Higher iron stores and the HFE 187C>G variant delay onset of peripheral neuropathy during combination antiretroviral therapy. PLoS ONE, 2020, 15, e0239758.	2.5	3
15	Title is missing!. , 2020, 18, e3000970.		0
16	Title is missing!. , 2020, 18, e3000970.		0
17	Title is missing!. , 2020, 18, e3000970.		0

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 18, e3000970.		Ο
20	Title is missing!. , 2020, 18, e3000970.		0
21	Title is missing!. , 2020, 18, e3000970.		О
22	Semaphorin4A causes loss of mature oligodendrocytes and demyelination in vivo. Journal of Neuroinflammation, 2019, 16, 28.	7.2	9
23	Cerebrospinal Fluid Ceruloplasmin, Haptoglobin, and Vascular Endothelial Growth Factor Are Associated with Neurocognitive Impairment in Adults with HIV Infection. Molecular Neurobiology, 2019, 56, 3808-3818.	4.0	26
24	White matter damage, neuroinflammation, and neuronal integrity in HAND. Journal of NeuroVirology, 2019, 25, 32-41.	2.1	77
25	Semaphorin4A and Hâ€ferritin utilize Timâ€1 on human oligodendrocytes: A novel neuroâ€immune axis. Glia, 2018, 66, 1317-1330.	4.9	50
26	Genetic Susceptibility to Postdiarrheal Hemolytic-Uremic Syndrome After Shiga Toxin–Producing Escherichia coli Infection: A Centers for Disease Control and Prevention FoodNet Study. Journal of Infectious Diseases, 2018, 217, 1000-1010.	4.0	7
27	Hemochromatosis (<i>HFE</i>) Gene Variants Are Associated with Increased Mitochondrial DNA Levels During HIV-1 Infection and Antiretroviral Therapy. AIDS Research and Human Retroviruses, 2018, 34, 942-949.	1.1	4
28	Genomeâ€wide association study of HIVâ€associated neurocognitive disorder (HAND): A CHARTER group study. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 413-426.	1.7	26
29	Genetic, Epigenetic, and Transcriptomic Studies of NeuroAIDS. , 2017, , 445-518.		0
30	Cerebrospinal fluid cell-free mitochondrial DNA is associated with HIV replication, iron transport, and mild HIV-associated neurocognitive impairment. Journal of Neuroinflammation, 2017, 14, 72.	7.2	30
31	Cerebrospinal fluid (CSF) biomarkers of iron status are associated with CSF viral load, antiretroviral therapy, and demographic factors in HIV-infected adults. Fluids and Barriers of the CNS, 2017, 14, 11.	5.0	21
32	Anemia and Red Blood Cell Indices Predict HIV-Associated Neurocognitive Impairment in the Highly Active Antiretroviral Therapy Era. Journal of Infectious Diseases, 2016, 213, 1065-1073.	4.0	31
33	European Mitochondrial DNA Haplogroups are Associated with Cerebrospinal Fluid Biomarkers of Inflammation in HIV Infection. Pathogens and Immunity, 2016, 1, 330.	3.1	7
34	Mitochondrial DNA Haplogroups and Neurocognitive Impairment During HIV Infection. Clinical Infectious Diseases, 2015, 61, 1476-1484.	5.8	27
35	Genetic Variation in Iron Metabolism Is Associated with Neuropathic Pain and Pain Severity in HIV-Infected Patients on Antiretroviral Therapy. PLoS ONE, 2014, 9, e103123.	2.5	29
36	Host Genetic Factors Predisposing to HIV-Associated Neurocognitive Disorder. Current HIV/AIDS Reports, 2014, 11, 336-352.	3.1	39

Asha Kallianpur

#	Article	IF	CITATIONS
37	Mitochondrial DNA variation and HIV-associated sensory neuropathy in CHARTER. Journal of NeuroVirology, 2012, 18, 511-520.	2.1	24
38	African Mitochondrial DNA Subhaplogroups and Peripheral Neuropathy during Antiretroviral Therapy. Journal of Infectious Diseases, 2010, 201, 1703-1707.	4.0	38
39	Pharmacogenetics of nucleoside reverse-transcriptase inhibitor-associated peripheral neuropathy. Pharmacogenomics, 2009, 10, 623-637.	1.3	35
40	The mitochondrial pharmacogenomics of haplogroup T: MTND2*LHON4917G and antiretroviral therapy-associated peripheral neuropathy. Pharmacogenomics Journal, 2008, 8, 71-77.	2.0	56
41	Hemochromatosis (HFE) gene mutations and peripheral neuropathy during antiretroviral therapy. Aids, 2006, 20, 1503-1513.	2.2	53
42	Mitochondrial haplogroups and peripheral neuropathy during antiretroviral therapy: an adult AIDS clinical trials group study. Aids, 2005, 19, 1341-1349.	2.2	129
43	Iron and oxidative injuryA commentary on "Fatty acid-mediated iron translocation: A synergistic mechanism of oxidative injury―by D. Yao et al Free Radical Biology and Medicine, 2005, 39, 1305-1309.	2.9	15