
Nicoletta Noceti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5498041/publications.pdf Version: 2024-02-01

NICOLETTA NOCETI

#	Article	IF	CITATIONS
1	Cross-view action recognition with small-scale datasets. Image and Vision Computing, 2022, 120, 104403.	4.5	6
2	HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty. , 2022, , .		3
3	Exploring theÂUse ofÂEfficient Projection Kernels forÂMotion Saliency Estimation. Lecture Notes in Computer Science, 2022, , 158-169.	1.3	3
4	Guest Editorial Assistive Computing Technologies for Human Well-Being. IEEE Transactions on Emerging Topics in Computing, 2021, 9, 1231-1233.	4.6	1
5	Positive technology for elderly well-being: A review. Pattern Recognition Letters, 2020, 137, 61-70.	4.2	55
6	The MoCA dataset, kinematic and multi-view visual streams of fine-grained cooking actions. Scientific Data, 2020, 7, 432.	5.3	15
7	Action similarity judgment based on kinematic primitives. , 2020, , .		3
8	Human Motion Understanding for Selecting Action Timing in Collaborative Human-Robot Interaction. Frontiers in Robotics and Al, 2019, 6, 58.	3.2	22
9	View-Invariant Robot Adaptation to Human Action Timing. Advances in Intelligent Systems and Computing, 2019, , 804-821.	0.6	3
10	The Effects of Data Sources: A Baseline Evaluation of the MoCA Dataset. Lecture Notes in Computer Science, 2019, , 544-555.	1.3	3
11	Guest Editorial A Sense of Interaction in Humans and Robots: From Visual Perception to Social Cognition. IEEE Transactions on Cognitive and Developmental Systems, 2018, 10, 839-842.	3.8	4
12	A multi-camera system for damage and tampering detection in a postal security framework. Eurasip Journal on Image and Video Processing, 2018, 2018, .	2.6	4
13	Detecting Biological Motion for Human–Robot Interaction: A Link between Perception and Action. Frontiers in Robotics and Al, 2017, 4, .	3.2	27
14	Online Space-Variant Background Modeling With Sparse Coding. IEEE Transactions on Image Processing, 2015, 24, 2415-2428.	9.8	24
15	Cognition Helps Vision: Recognizing Biological Motion Using Invariant Dynamic Cues. Lecture Notes in Computer Science, 2015, , 676-686.	1.3	7
16	Humans in groups: The importance of contextual information for understanding collective activities. Pattern Recognition, 2014, 47, 3535-3551.	8.1	13
17	Spatio-temporal constraints for on-line 3D object recognition in videos. Computer Vision and Image Understanding, 2009, 113, 1198-1209.	4.7	7
18	On the Use of Efficient Projection Kernels for Motion-Based Visual Saliency Estimation. Frontiers in Computer Science, 0, 4, .	2.8	2