Ute Roessner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5497935/publications.pdf

Version: 2024-02-01

194 papers 16,370 citations

24978 57 h-index 121 g-index

214 all docs

214 docs citations

times ranked

214

18459 citing authors

#	Article	IF	CITATIONS
1	A Historical Overview of Natural Products in Drug Discovery. Metabolites, 2012, 2, 303-336.	1.3	1,254
2	Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant Journal, 2000, 23, 131-142.	2.8	1,058
3	Metabolic Profiling Allows Comprehensive Phenotyping of Genetically or Environmentally Modified Plant Systems. Plant Cell, 2001, 13, 11-29.	3.1	984
4	Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nature Biotechnology, 2006, 24, 447-454.	9.4	707
5	Potential of metabolomics as a functional genomics tool. Trends in Plant Science, 2004, 9, 418-425.	4.3	685
6	GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Letters, 2005, 579, 1332-1337.	1.3	596
7	The genome of Chenopodium quinoa. Nature, 2017, 542, 307-312.	13.7	569
8	Insights Into Oxidized Lipid Modification in Barley Roots as an Adaptation Mechanism to Salinity Stress. Frontiers in Plant Science, 2020, 11, 1.	1.7	477
9	Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. Journal of Experimental Botany, 2009, 60, 4089-4103.	2.4	375
10	Drought Responses of Leaf Tissues from Wheat Cultivars of Differing Drought Tolerance at the Metabolite Level. Molecular Plant, 2012, 5, 418-429.	3.9	370
11	Enzymes of Glycolysis Are Functionally Associated with the Mitochondrion in Arabidopsis Cells. Plant Cell, 2003, 15, 2140-2151.	3.1	345
12	Metabolic Profiling of Transgenic Tomato Plants Overexpressing Hexokinase Reveals That the Influence of Hexose Phosphorylation Diminishes during Fruit Development. Plant Physiology, 2003, 133, 84-99.	2.3	331
13	Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Reports, 2003, 4, 989-993.	2.0	308
14	Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiologia Plantarum, 2008, 132, 209-219.	2.6	290
15	A proposed framework for the description of plant metabolomics experiments and their results. Nature Biotechnology, 2004, 22, 1601-1606.	9.4	283
16	Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. Journal of Colloid and Interface Science, 2011, 353, 433-444.	5.0	251
17	Analysis of the Compartmentation of Glycolytic Intermediates, Nucleotides, Sugars, Organic Acids, Amino Acids, and Sugar Alcohols in Potato Tubers Using a Nonaqueous Fractionation Method. Plant Physiology, 2001, 127, 685-700.	2.3	247
18	A combined reduction in activity of starch synthases II and III of potato has novel effects on the starch of tubers. Plant Journal, 1999, 17, 251-261.	2.8	213

#	Article	IF	Citations
19	Mass spectrometry imaging for plant biology: a review. Phytochemistry Reviews, 2016, 15, 445-488.	3.1	210
20	Normalizing and Integrating Metabolomics Data. Analytical Chemistry, 2012, 84, 10768-10776.	3.2	183
21	Optimal nutrient exchange and immune responses operate in partner specificity in the cnidarian-dinoflagellate symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13194-13199.	3.3	181
22	An Investigation of Boron Toxicity in Barley Using Metabolomics. Plant Physiology, 2006, 142, 1087-1101.	2.3	174
23	High-Resolution Metabolic Phenotyping of Genetically and Environmentally Diverse Potato Tuber Systems. Identification of Phenocopies. Plant Physiology, 2001, 127, 749-764.	2.3	173
24	Metabolite Profiling Reveals Distinct Changes in Carbon and Nitrogen Metabolism in Phosphate-Deficient Barley Plants (Hordeum vulgare L.). Plant and Cell Physiology, 2008, 49, 691-703.	1.5	169
25	What is metabolomics all about?. BioTechniques, 2009, 46, 363-365.	0.8	160
26	Cell-Type-Specific H ⁺ -ATPase Activity in Root Tissues Enables K ⁺ Retention and Mediates Acclimation of Barley (<i>Hordeum vulgare</i>) to Salinity Stress. Plant Physiology, 2016, 172, 2445-2458.	2.3	158
27	Root spatial metabolite profiling of two genotypes of barley <i>(Hordeum vulgare</i> L.) reveals differences in response to short-term salt stress. Journal of Experimental Botany, 2016, 67, 3731-3745.	2.4	137
28	The Sucrose Transporter StSUT1 Localizes to Sieve Elements in Potato Tuber Phloem and Influences Tuber Physiology and Development,. Plant Physiology, 2003, 131, 102-113.	2.3	134
29	Antisense Inhibition of Threonine Synthase Leads to High Methionine Content in Transgenic Potato Plants. Plant Physiology, 2001, 127, 792-802.	2.3	122
30	Kinetics of labelling of organic and amino acids in potato tubers by gas chromatography-mass spectrometry following incubation in 13C labelled isotopes. Plant Journal, 2004, 39, 668-679.	2.8	118
31	Minimum reporting standards for plant biology context information in metabolomic studies. Metabolomics, 2007, 3, 195-201.	1.4	116
32	Whole-Genome Mapping of Agronomic and Metabolic Traits to Identify Novel Quantitative Trait Loci in Bread Wheat Grown in a Water-Limited Environment. Plant Physiology, 2013, 162, 1266-1281.	2.3	115
33	Alleviation of salinity stress in plants by endophytic plant-fungal symbiosis: Current knowledge, perspectives and future directions. Plant and Soil, 2021, 461, 219-244.	1.8	109
34	The response of the maize nitrate transport system to nitrogen demand and supply across the lifecycle. New Phytologist, 2013, 198, 82-94.	3.5	108
35	Comprehensive Profiling and Quantitation of Amine Group Containing Metabolites. Analytical Chemistry, 2011, 83, 7523-7530.	3.2	107
36	Overexpression of the sucrose transporter SoSUT1 in potato results in alterations in leaf carbon partitioning and in tuber metabolism but has little impact on tuber morphology. Planta, 2003, 217, 158-167.	1.6	101

#	Article	lF	Citations
37	Epidermal bladder cells confer salinity stress tolerance in the halophyte quinoa and Atriplex species. Plant, Cell and Environment, 2017, 40, 1900-1915.	2.8	98
38	Quantitative profiling of polar primary metabolites of two chickpea cultivars with contrasting responses to salinity. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 1000, 1-13.	1.2	96
39	The contribution of plastidial phosphoglucomutase to the control of starch synthesis within the potato tuber. Planta, 2001, 213, 418-426.	1.6	91
40	Proposed quantitative and alphanumeric metabolite identification metrics. Metabolomics, 2014, 10, 1047-1049.	1.4	91
41	Antisense Repression of Hexokinase 1 Leads to an Overaccumulation of Starch in Leaves of Transgenic Potato Plants But Not to Significant Changes in Tuber Carbohydrate Metabolism. Plant Physiology, 1999, 121, 123-134.	2.3	87
42	Changes in the Sugarcane Metabolome with Stem Development. Are They Related to Sucrose Accumulation?. Plant and Cell Physiology, 2007, 48, 573-584.	1.5	87
43	Metabolite profiling of symbiont and host during thermal stress and bleaching in the coral Acropora aspera. Coral Reefs, 2017, 36, 105-118.	0.9	87
44	Low doses of the neonicotinoid insecticide imidacloprid induce ROS triggering neurological and metabolic impairments in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25840-25850.	3.3	85
45	The Sucrose Analog Palatinose Leads to a Stimulation of Sucrose Degradation and Starch Synthesis When Supplied to Discs of Growing Potato Tubers. Plant Physiology, 2001, 125, 1967-1977.	2.3	82
46	Pyruvate Decarboxylase Provides Growing Pollen Tubes with a Competitive Advantage in Petunia. Plant Cell, 2005, 17, 2355-2368.	3.1	82
47	Antisense repression of cytosolic phosphoglucomutase in potato (Solanum tuberosum) results in severe growth retardation, reduction in tuber number and altered carbon metabolism. Planta, 2002, 214, 510-520.	1.6	76
48	Metabolite analysis for the comparison of irrigated and non-irrigated field grown tomato of varying genotype. Metabolomics, 2007, 3, 289-295.	1.4	72
49	Detection of QTL for metabolic and agronomic traits in wheat with adjustments for variation at genetic loci that affect plant phenology. Plant Science, 2015, 233, 143-154.	1.7	72
50	Partner switching and metabolic flux in a model cnidarian–dinoflagellate symbiosis. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, .	1.2	72
51	De Novo Amino Acid Biosynthesis in Potato Tubers Is Regulated by Sucrose Levels. Plant Physiology, 2003, 133, 683-692.	2.3	71
52	High-mass-resolution MALDI mass spectrometry imaging reveals detailed spatial distribution of metabolites and lipids in roots of barley seedlings in response to salinity stress. Metabolomics, 2018, 14, 63.	1.4	69
53	Metabolic profiling and biochemical phenotyping of plant systems. Plant Cell Reports, 2002, 21, 189-196.	2.8	66
54	Profiling of polar metabolites in biological extracts using diamond hydrideâ€based aqueous normal phase chromatography. Journal of Separation Science, 2009, 32, 2273-2280.	1.3	63

#	Article	IF	Citations
55	PyMS: a Python toolkit for processing of gas chromatography-mass spectrometry (GC-MS) data. Application and comparative study of selected tools. BMC Bioinformatics, 2012, 13, 115.	1.2	63
56	A Quantitative Profiling Method of Phytohormones and Other Metabolites Applied to Barley Roots Subjected to Salinity Stress. Frontiers in Plant Science, 2016, 7, 2070.	1.7	63
57	Advances in functional genomics for investigating salinity stress tolerance mechanisms in cereals. Frontiers in Plant Science, 2013, 4, 123.	1.7	62
58	Characterization of Ion Contents and Metabolic Responses to Salt Stress of Different Arabidopsis AtHKT1;1 Genotypes and Their Parental Strains. Molecular Plant, 2013, 6, 350-368.	3.9	61
59	13C metabolomics reveals widespread change in carbon fate during coral bleaching. Metabolomics, 2018, 14, 12.	1.4	60
60	Morphological and metabolic responses to salt stress of rice (Oryza sativa L.) cultivars which differ in salinity tolerance. Plant Physiology and Biochemistry, 2019, 144, 427-435.	2.8	59
61	The impact of constitutive heterologous expression of a moss Na+ transporter on the metabolomes of rice and barley. Metabolomics, 2007, 3, 307-317.	1.4	57
62	Rice suspension cultured cells are evaluated as a model system to study salt responsive networks in plants using a combined proteomic and metabolomic profiling approach. Proteomics, 2013, 13, 2046-2062.	1.3	55
63	Genetic variation in the root growth response of barley genotypes to salinity stress. Functional Plant Biology, 2013, 40, 516.	1.1	53
64	Mechanisms associated with <scp>Fe</scp> â€deficiency tolerance and signaling in shoots of <i>Pisum sativum</i> . Physiologia Plantarum, 2013, 147, 381-395.	2.6	53
65	Mapping carbon fate during bleaching in a model cnidarian symbiosis: the application of ¹³ C metabolomics. New Phytologist, 2017, 214, 1551-1562.	3.5	53
66	Feeding the Walls: How Does Nutrient Availability Regulate Cell Wall Composition?. International Journal of Molecular Sciences, 2018, 19, 2691.	1.8	52
67	Salt-stress induced alterations in the root lipidome of two barley genotypes with contrasting responses to salinity. Functional Plant Biology, 2016, 43, 207.	1.1	48
68	A high-resolution HPLC-QqTOF platform using parallel reaction monitoring for in-depth lipid discovery and rapid profiling. Analytica Chimica Acta, 2018, 1026, 87-100.	2.6	47
69	Spatio-Temporal Metabolite and Elemental Profiling of Salt Stressed Barley Seeds During Initial Stages of Germination by MALDI-MSI and µ-XRF Spectrometry. Frontiers in Plant Science, 2019, 10, 1139.	1.7	46
70	LCâ€"MS and GCâ€"MS metabolite profiling of nickel(II) complexes in the latex of the nickel-hyperaccumulating tree Sebertia acuminata and identification of methylated aldaric acid as a new nickel(II) ligand. Phytochemistry, 2008, 69, 240-251.	1.4	45
71	Modulators or facilitators? Roles of lipids in plant root–microbe interactions. Trends in Plant Science, 2022, 27, 180-190.	4.3	45
72	Elemental imaging of leaves from the metal hyperaccumulating plant Noccaea caerulescens shows different spatial distribution of Ni, Zn and Cd. RSC Advances, 2016, 6, 2337-2344.	1.7	42

#	Article	IF	CITATIONS
73	Functional Traits 2.0: The power of the metabolome for ecology. Journal of Ecology, 2022, 110, 4-20.	1.9	42
74	Opposite fates of the purine metabolite allantoin under water and nitrogen limitations in bread wheat. Plant Molecular Biology, 2019, 99, 477-497.	2.0	41
75	Metabolomics of capsicum ripening reveals modification of the ethylene related-pathway and carbon metabolism. Postharvest Biology and Technology, 2014, 89, 19-31.	2.9	40
76	Phenotypic and metabolic plasticity shapes lifeâ€history strategies under combinations of abiotic stresses. Plant Direct, 2019, 3, e00113.	0.8	39
77	Elemental and metabolite profiling of nickel hyperaccumulators from New Caledonia. Phytochemistry, 2012, 81, 80-89.	1.4	38
78	Metabolic profiling of transgenic wheat over-expressing the high-molecular-weight Dx5 glutenin subunit. Metabolomics, 2009, 5, 239-252.	1.4	36
79	Characterisation of HvALMT1 function in transgenic barley plants. Functional Plant Biology, 2011, 38, 163.	1.1	35
80	Metabolic profiling of a transgenic Caenorhabditis elegans Alzheimer model. Metabolomics, 2015, 11, 477-486.	1.4	33
81	De novo transcriptome assembly and analysis of differentially expressed genes of two barley genotypes reveal root-zone-specific responses to salt exposure. Scientific Reports, 2016, 6, 31558.	1.6	33
82	Genotypic Variation in the Root and Shoot Metabolite Profiles of Wheat (Triticum aestivum L.) Indicate Sustained, Preferential Carbon Allocation as a Potential Mechanism in Phosphorus Efficiency. Frontiers in Plant Science, 2019, 10, 995.	1.7	32
83	Characterization of Starch-Debranching Enzymes in Pea Embryos. Plant Physiology, 1998, 118, 581-590.	2.3	31
84	Transcriptional and metabolic profiles of stress-induced, embryogenic tobacco microspores. Plant Molecular Biology, 2006, 63, 137-149.	2.0	31
85	Metabolite profiling of wheat (Triticum aestivum L.) phloem exudate. Plant Methods, 2014, 10, 27.	1.9	31
86	EXIMS: an improved data analysis pipeline based on a new peak picking method for EXploring Imaging Mass Spectrometry data. Bioinformatics, 2015, 31, 3198-3206.	1.8	31
87	From common to rare Zingiberaceae plants - A metabolomics study using GC-MS. Phytochemistry, 2017, 140, 141-150.	1.4	31
88	Phenotyping reproductive stage chilling and frost tolerance in wheat using targeted metabolome and lipidome profiling. Metabolomics, 2019, 15, 144.	1.4	31
89	Hyperaccumulation of zinc by Noccaea caerulescens results in a cascade of stress responses and changes in the elemental profile. Metallomics, 2014, 6, 1671-1682.	1.0	30
90	Insights into Lipidomic Perturbations in Zebrafish Tissues upon Exposure to Microcystin-LR and Microcystin-RR. Environmental Science & Environmental S	4.6	29

#	Article	IF	CITATIONS
91	RNA Catabolites Contribute to the Nitrogen Pool and Support Growth Recovery of Wheat. Frontiers in Plant Science, 2018, 9, 1539.	1.7	29
92	Inactivation of Mitochondrial Complex I Induces the Expression of a Twin Cysteine Protein that Targets and Affects Cytosolic, Chloroplastidic and Mitochondrial Function. Molecular Plant, 2016, 9, 696-710.	3.9	28
93	Metabolomics as an emerging tool to study plant–microbe interactions. Emerging Topics in Life Sciences, 2022, 6, 175-183.	1.1	28
94	A Golgi UDP-GlcNAc transporter delivers substrates for N-linked glycans and sphingolipids. Nature Plants, 2018, 4, 792-801.	4.7	27
95	Comparative metabolic and ionomic profiling of two cultivars of Stevia rebaudiana Bert. (Bertoni) grown under salinity stress. Plant Physiology and Biochemistry, 2018, 129, 56-70.	2.8	26
96	Integrative Multi-omics Analyses of Barley Rootzones under Salinity Stress Reveal Two Distinctive Salt Tolerance Mechanisms. Plant Communications, 2020, 1, 100031.	3.6	26
97	The use of metabolomics in the study of metals in biological systems. Metallomics, 2015, 7, 29-38.	1.0	25
98	Diurnal Changes in Transcript and Metabolite Levels during the Iron Deficiency Response of Rice. Rice, 2017, 10, 14.	1.7	25
99	Salt stress alters membrane lipid content and lipid biosynthesis pathways in the plasma membrane and tonoplast. Plant Physiology, 2022, 189, 805-826.	2.3	25
100	High-Resolution Metabolic Phenotyping of Genetically and Environmentally Diverse Potato Tuber Systems. Identification of Phenocopies. Plant Physiology, 2001, 127, 749-764.	2.3	24
101	Increases of 3-phosphoglyceric acid in potato plants through antisense reduction of cytoplasmic phosphoglycerate mutase impairs photosynthesis and growth, but does not increase starch contents. Plant, Cell and Environment, 2002, 25, 1133-1143.	2.8	24
102	Shooting control by brassinosteroids: metabolomic analysis and effect of brassinazole on Malus prunifolia, the Marubakaido apple rootstock. Tree Physiology, 2009, 29, 607-620.	1.4	24
103	Water availability moderates N ₂ fixation benefit from elevated [CO ₂]: A 2â€year freeâ€air CO ₂ enrichment study on lentil (⟨i>Lens culinaris MEDIK.) in a water limited agroecosystem. Plant, Cell and Environment, 2018, 41, 2418-2434.	2.8	24
104	Antioxidant system status of cucumber plants under pesticides treatment. Acta Physiologiae Plantarum, 2020, 42, 1.	1.0	24
105	Plant metabolomics. , 2012, , 67-81.		23
106	Identification of physiological changes and key metabolites coincident with postharvest internal browning of pineapple (Ananas comosus L.) fruit. Postharvest Biology and Technology, 2018, 137, 56-65.	2.9	23
107	Comparative spatial lipidomics analysis reveals cellular lipid remodelling in different developmental zones of barley roots in response to salinity. Plant, Cell and Environment, 2020, 43, 327-343.	2.8	23
108	Metabolite Measurements. , 2009, , 39-69.		23

#	Article	IF	CITATIONS
109	Single cellâ€type analysis of cellular lipid remodelling in response to salinity in the epidermal bladder cells of the model halophyte <scp><i>Mesembryanthemum crystallinum</i></scp> . Plant, Cell and Environment, 2018, 41, 2390-2403.	2.8	22
110	A SIEVE-RAFT HYPOTHESIS FOR THE REGULATION OF ENDOTHELIAL FENESTRATIONS. Computational and Structural Biotechnology Journal, 2013, 8, e201308003.	1.9	21
111	Dietary intervention rescues myopathy associated with neurofibromatosis type 1. Human Molecular Genetics, 2018, 27, 577-588.	1.4	21
112	Comparative metabolomics implicates threitol as a fungal signal supporting colonization of <i>Armillaria luteobubalina < li> on eucalypt roots. Plant, Cell and Environment, 2020, 43, 374-386.</i>	2.8	19
113	Metabolite pools of the reef building coral Montipora capitata are unaffected by Symbiodiniaceae community composition. Coral Reefs, 2020, 39, 1727-1737.	0.9	19
114	Arabidopsis REI-LIKE proteins activate ribosome biogenesis during cold acclimation. Scientific Reports, 2021, 11, 2410.	1.6	19
115	Expression of a Bacterial Xylose Isomerase in Potato Tubers Results in an Altered Hexose Composition and a Consequent Induction of Metabolism. Plant and Cell Physiology, 2003, 44, 1359-1367.	1.5	18
116	Metabolomics – The Combination of Analytical Biochemistry, Biology, and Informatics. , 2011, , 447-459.		18
117	Prospection and identification of nematotoxic compounds from Canavalia ensiformis seeds effective in the control of the root knot nematode Meloidogyne incognita. Biotechnology Research and Innovation, 2017, $1,87-100$.	0.3	18
118	An Arabidopsis lipid map reveals differences between tissues and dynamic changes throughout development. Plant Journal, 2021, 107, 287-302.	2.8	18
119	Proteomic and Metabolic Profiling of Rice Suspension Culture Cells as a Model to Study Abscisic Acid Signaling Response Pathways in Plants. Journal of Proteome Research, 2010, 9, 6623-6634.	1.8	17
120	Determination of amino acids in urine of patients with prostate cancer and benign prostate growth. European Journal of Cancer Prevention, 2017, 26, 131-134.	0.6	17
121	The Influence of Contrasting Microbial Lifestyles on the Pre-symbiotic Metabolite Responses of Eucalyptus grandis Roots. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	17
122	Metabolic Profiling Allows Comprehensive Phenotyping of Genetically or Environmentally Modified Plant Systems. Plant Cell, 2001, 13, 11.	3.1	16
123	Nitrogen assimilation system in maize is regulated by developmental and tissue-specific mechanisms. Plant Molecular Biology, 2016, 92, 293-312.	2.0	16
124	MASTR-MS: a web-based collaborative laboratory information management system (LIMS) for metabolomics. Metabolomics, 2017, 13, 14.	1.4	16
125	Systems-based approaches enable identification of gene targets which improve the flavour profile of low-ethanol wine yeast strains. Metabolic Engineering, 2018, 49, 178-191.	3.6	16
126	The state of the art in plant lipidomics. Molecular Omics, 2021, 17, 894-910.	1.4	16

#	Article	IF	Citations
127	Reproductive Stage Drought Tolerance in Wheat: Importance of Stomatal Conductance and Plant Growth Regulators. Genes, 2021, 12, 1742.	1.0	16
128	Low doses of the organic insecticide spinosad trigger lysosomal defects, elevated ROS, lipid dysregulation, and neurodegeneration in flies. ELife, 2022, 11 , .	2.8	16
129	Metabolomics, Standards, and Metabolic Modeling for Synthetic Biology in Plants. Frontiers in Bioengineering and Biotechnology, 2015, 3, 167.	2.0	15
130	Beta-glucan-depleted, glycopeptide-rich extracts from Brewer's and Baker's yeast (Saccharomyces) Tj ETÇ Chemistry, 2016, 197, 761-768.)q0 0 0 rg 4.2	gBT /Overlock 15
131	A comprehensive comparison of four methods for extracting lipids from Arabidopsis tissues. Plant Methods, 2020, 16, 155.	1.9	15
132	Membrane-Enriched Proteomics Link Ribosome Accumulation and Proteome Reprogramming With Cold Acclimation in Barley Root Meristems. Frontiers in Plant Science, 2021, 12, 656683.	1.7	15
133	Sampling and Sample Preparation. , 0, , 39-82.		14
134	Phenotyping the Chilling and Freezing Responses of Young Microspore Stage Wheat Spikes Using Targeted Metabolome and Lipidome Profiling. Cells, 2020, 9, 1309.	1.8	14
135	Plant Tissue Extraction for Metabolomics. Methods in Molecular Biology, 2013, 1055, 21-28.	0.4	14
136	Phylogenetic analysis and functional characterisation of strictosidine synthase-like genes in Arabidopsis thaliana. Functional Plant Biology, 2009, 36, 1098.	1.1	13
137	Inoculation of barley with <i>Trichoderma harzianum</i> T-22 modifies lipids and metabolites to improve salt tolerance. Journal of Experimental Botany, 2021, 72, 7229-7246.	2.4	13
138	Characterization of epidermal bladder cells in <scp><i>Chenopodium quinoa</i></scp> . Plant, Cell and Environment, 2021, 44, 3836-3852.	2.8	13
139	Metabolomic study reveals a selective accumulation of l-arginine in the d-ornithine treated tobacco cell suspension culture. Process Biochemistry, 2014, 49, 140-147.	1.8	12
140	A tandem liquid chromatography–mass spectrometry (LC–MS) method for profiling small molecules in complex samples. Metabolomics, 2015, 11, 1552-1562.	1.4	12
141	Structural and functional measures of marine microbial communities: An experiment to assess implications for oil spill management. Marine Pollution Bulletin, 2018, 131, 525-529.	2.3	12
142	Exploratory analysis of high-throughput metabolomic data. Metabolomics, 2013, 9, 1311-1320.	1.4	11
143	Transition from a maternal to external nitrogen source in maize seedlings. Journal of Integrative Plant Biology, 2017, 59, 261-274.	4.1	11
144	Non-protein amino acids in Australian acacia seed: Implications for food security and recommended processing methods to reduce djenkolic acid. Food Chemistry, 2015, 179, 109-115.	4.2	10

#	Article	IF	Citations
145	Edaphic niche characterization of four Proteaceae reveals unique calcicole physiology linked to hyperâ€endemism of Grevillea thelemanniana. New Phytologist, 2020, 228, 869-883.	3.5	10
146	Time-resolution of the shoot and root growth of the model cereal Brachypodium in response to inoculation with Azospirillum bacteria at low phosphorus and temperature. Plant Growth Regulation, 2021, 93, 149-162.	1.8	10
147	Evaluation of physiological and biochemical responses of pistachio plants (Pistacia vera L.) exposed to pesticides. Ecotoxicology, 2021, 30, 1084-1097.	1.1	10
148	Spatially Enriched Paralog Rearrangements Argue Functionally Diverse Ribosomes Arise during Cold Acclimation in Arabidopsis. International Journal of Molecular Sciences, 2021, 22, 6160.	1.8	10
149	Metabolomics in Humans and Other Mammals. , 0, , 253-288.		9
150	LC-MS Profiling to Link Metabolic and Phenotypic Diversity in Plant Mapping Populations. Methods in Molecular Biology, 2014, 1198, 29-41.	0.4	9
151	Cross-Platform Urine Metabolomics of Experimental Hyperglycemia in Type 2 Diabetes. Journal of Diabetes & Metabolism, 2013, 01, .	0.2	9
152	Germline mutations in mitochondrial complex I reveal genetic and targetable vulnerability in IDH1-mutant acute myeloid leukaemia. Nature Communications, 2022, 13, 2614.	5.8	9
153	Flicker Light-Induced Retinal Vasodilation Is Unaffected by Inhibition of Epoxyeicosatrienoic Acids and Prostaglandins in Humans. Investigative Ophthalmology and Visual Science, 2014, 55, 7007-7013.	3.3	8
154	Unsupervised learning for exploring MALDI imaging mass spectrometry & amp; #x2018; omics & amp; #x2019; data., 2014, , .		8
155	Extraction of Plant Lipids for LC-MS-Based Untargeted Plant Lipidomics. Methods in Molecular Biology, 2018, 1778, 125-135.	0.4	8
156	The changes in the release level of polyunsaturated fatty acids (Ή-3 and ω-6) and lipids in the untreated and water-soaked chia seed. Food Research International, 2019, 126, 108665.	2.9	8
157	The Metabolic Response of Brachypodium Roots to the Interaction with Beneficial Bacteria Is Affected by the Plant Nutritional Status. Metabolites, 2021, 11, 358.	1.3	8
158	A new peak detection algorithm for MALDI mass spectrometry data based on a modified Asymmetric Pseudo-Voigt model. BMC Genomics, 2015, 16, S12.	1.2	7
159	The international Metabolomics Society in 2015: the path forward to success. Metabolomics, 2015, 11, 1-2.	1.4	7
160	Wheat Can Access Phosphorus From Algal Biomass as Quickly and Continuously as From Mineral Fertilizer. Frontiers in Plant Science, 2021, 12, 631314.	1.7	7
161	The metabolic environment of the developing embryo: A multidisciplinary approach on oilseed rapeseed. Journal of Plant Physiology, 2021, 265, 153505.	1.6	7
162	Simultaneous antagonistic modulation of enzyme activities in transgenic plants through the expression of a chimeric transcript. Plant Physiology and Biochemistry, 2001, 39, 825-830.	2.8	6

#	Article	IF	CITATIONS
163	Metabolomics: Enabling Systems-Level Phenotyping in Rice Functional Genomics. , 2007, , 91-107.		6
164	Quantification of Sugars and Organic Acids in Biological Matrices Using GC-QqQ-MS. Methods in Molecular Biology, $2018,1778,207-223.$	0.4	5
165	Evaluating modified diets and dietary supplement therapies for reducing muscle lipid accumulation and improving muscle function in neurofibromatosis type 1 (NF1). PLoS ONE, 2020, 15, e0237097.	1.1	5
166	The importance of anatomy and physiology in plant metabolomics. Topics in Current Genetics, 2007, , 253-278.	0.7	4
167	Metabolomics and the move towards biology. Metabolomics, 2011, 7, 454-456.	1.4	4
168	Metabolomics for Salinity Research. , 2012, 913, 203-215.		4
169	Genome-wide association studies of 74 plasma metabolites of German shepherd dogs reveal two metabolites associated with genes encoding their enzymes. Metabolomics, 2019, 15, 123.	1.4	4
170	Root Growth and Architecture of Wheat and Brachypodium Vary in Response to Algal Fertilizer in Soil and Solution. Agronomy, 2022, 12, 285.	1.3	4
171	The Effect of Cold Stress on the Root-Specific Lipidome of Two Wheat Varieties with Contrasting Cold Tolerance. Plants, 2022, 11, 1364.	1.6	4
172	The Chemical Challenge of the Metabolome. , 0, , 15-38.		3
173	Metabolome Analysis. , 2019, , 396-409.		3
174	ncovering the Plant Metabolome: Current and Future Challenges. , 2007, , 71-85.		3
175	Yeast Metabolomics: The Discovery of New Metabolic Pathways inSaccharomyces Cerevisiae. , 0, , 189-202.		2
176	Microbial Metabolomics: Rapid Sampling Techniques to Investigate Intracellular Metabolite Dynamicsâ€"An Overview. , 0, , 203-214.		2
177	Metabolomics in Functional Genomics and Systems Biology. , 0, , 1-14.		1
178	Plant Metabolomics., 0,, 215-238.		1
179	Analytical Tools., 0,, 83-145.		1
180	Metabolomics continues to flourish: highlights from the 2014 Metabolomics Society Conference. Metabolomics, 2014, 10, 772-774.	1.4	1

#	Article	IF	Citations
181	Applications of metabolomics in the study of pathogenic microorganisms and their effects on human health, 2014, , 124-140.		1
182	Effect of Spirotetramat Application on Salicylic Acid, Antioxidative Enzymes, Amino Acids, Mineral Elements, and Soluble Carbohydrates in Cucumber (Cucumis sativus L.)., 2021, 11,.		1
183	Analysis of the Compartmentation of Glycolytic Intermediates, Nucleotides, Sugars, Organic Acids, Amino Acids, and Sugar Alcohols in Potato Tubers Using a Nonaqueous Fractionation Method. Plant Physiology, 2001, 127, 685-700.	2.3	0
184	Wiley-Interscience Series in Mass Spectrometry. , 0, , 312-312.		0
185	Mass Profiling of Fungal Extract fromPenicillium Species. , 0, , 239-252.		O
186	The election process for the Board of Directors of the Metabolomics Society. Metabolomics, 2013, 9, 753-754.	1.4	0
187	Metabolomics Society Board Election 2013: introduction of new board members. Metabolomics, 2013, 9, 1132-1133.	1.4	O
188	The International Metabolomics Society forms affiliations with regional metabolomics initiatives: a reflection of 2013 and looking forward to 2014. Metabolomics, 2014, 10, 3-4.	1.4	0
189	The election process for the Board of Directors of the Metabolomics Society: call for nomination of new board directors. Metabolomics, 2014, 10, 349-349.	1.4	O
190	2015: an eventful year for the Metabolomics Society. Metabolomics, 2015, 11, 1475-1477.	1.4	0
191	One minute with the Metabolomics Society's Honorary Fellows 2015. Metabolomics, 2015, 11, 779-781.	1.4	O
192	Metabolomics Society's International Affiliations. Metabolomics, 2015, 11, 501-502.	1.4	0
193	The metabolic significance of symbiont community composition in the coral-algal symbiosis. , 2022, , 211-229.		0
194	Exploring the coral bleaching tipping point with 13C metabolomics. , 2022, , 199-209.		0