
Florian Wimmers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5497915/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Designing spatial and temporal control of vaccine responses. Nature Reviews Materials, 2022, 7, 174-195.	23.3	130
2	Durability of immune responses to the BNT162b2 mRNA vaccine. Med, 2022, 3, 25-27.	2.2	33
3	Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell, 2022, 185, 1025-1040.e14.	13.5	243
4	A molecular atlas of innate immunity to adjuvanted and live attenuated vaccines, in mice. Nature Communications, 2022, 13, 549.	5.8	21
5	Antibodies elicited by SARS-CoV-2 infection or mRNA vaccines have reduced neutralizing activity against Beta and Omicron pseudoviruses. Science Translational Medicine, 2022, 14, eabn7842.	5.8	92
6	Natural resistance against infections: focus on COVID-19. Trends in Immunology, 2022, 43, 106-116.	2.9	17
7	Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nature Immunology, 2022, 23, 543-555.	7.0	185
8	Epigenetic adjuvants: durable reprogramming of the innate immune system with adjuvants. Current Opinion in Immunology, 2022, 77, 102189.	2.4	15
9	The C3/465 glycan hole cluster in BG505 HIV-1 envelope is the major neutralizing target involved in preventing mucosal SHIV infection. PLoS Pathogens, 2021, 17, e1009257.	2.1	23
10	Adjuvanting a subunit COVID-19 vaccine to induce protective immunity. Nature, 2021, 594, 253-258.	13.7	253
11	Emerging concepts in the science of vaccine adjuvants. Nature Reviews Drug Discovery, 2021, 20, 454-475.	21.5	601
12	The single-cell epigenomic and transcriptional landscape of immunity to influenza vaccination. Cell, 2021, 184, 3915-3935.e21.	13.5	133
13	Systems vaccinology of the BNT162b2 mRNA vaccine in humans. Nature, 2021, 596, 410-416.	13.7	313
14	Immunophenotyping assessment in a COVID-19 cohort (IMPACC): A prospective longitudinal study. Science Immunology, 2021, 6, .	5.6	20
15	Direct comparison of antibody responses to four SARS-CoV-2 vaccines in Mongolia. Cell Host and Microbe, 2021, 29, 1738-1743.e4.	5.1	61
16	The immunology of SARS-CoV-2 infections and vaccines. Seminars in Immunology, 2020, 50, 101422.	2.7	85
17	Editorial overview: Vaccines 2020. Current Opinion in Immunology, 2020, 65, iii.	2.4	2
18	The Impact of the Microbiome on Immunity to Vaccination in Humans. Cell Host and Microbe, 2020, 28, 169-179.	5.1	104

FLORIAN WIMMERS

#	Article	IF	CITATIONS
19	Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science, 2020, 369, 1210-1220.	6.0	947
20	The science and medicine of human immunology. Science, 2020, 369, .	6.0	147
21	T cell-inducing vaccine durably prevents mucosal SHIV infection even with lower neutralizing antibody titers. Nature Medicine, 2020, 26, 932-940.	15.2	124
22	Emerging technologies for systems vaccinology — multi-omics integration and single-cell (epi)genomic profiling. Current Opinion in Immunology, 2020, 65, 57-64.	2.4	23
23	Squalene emulsion-based vaccine adjuvants stimulate CD8 T cell, but not antibody responses, through a RIPK3-dependent pathway. ELife, 2020, 9, .	2.8	48
24	Antibiotics-Driven Gut Microbiome Perturbation Alters Immunity to Vaccines in Humans. Cell, 2019, 178, 1313-1328.e13.	13.5	402
25	A Pipette-Tip Based Method for Seeding Cells to Droplet Microfluidic Platforms. Journal of Visualized Experiments, 2019, , .	0.2	16
26	Immunology taught by vaccines. Science, 2019, 366, 1074-1075.	6.0	21
27	Vaccine induction of antibodies and tissue-resident CD8+ T cells enhances protection against mucosal SHIV-infection in young macaques. JCI Insight, 2019, 4, .	2.3	50
28	Naturally produced type I IFNs enhance human myeloid dendritic cell maturation and IL-12p70 production and mediate elevated effector functions in innate and adaptive immune cells. Cancer Immunology, Immunotherapy, 2018, 67, 1425-1436.	2.0	15
29	Single-cell analysis reveals that stochasticity and paracrine signaling control interferon-alpha production by plasmacytoid dendritic cells. Nature Communications, 2018, 9, 3317.	5.8	116
30	Systems analysis of protective immune responses to RTS,S malaria vaccination in humans. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2425-2430.	3.3	249
31	Metabolic Phenotypes of Response to Vaccination in Humans. Cell, 2017, 169, 862-877.e17.	13.5	234
32	Adjuvanting a Simian Immunodeficiency Virus Vaccine with Toll-Like Receptor Ligands Encapsulated in Nanoparticles Induces Persistent Antibody Responses and Enhanced Protection in TRIM5α Restrictive Macaques. Journal of Virology, 2017, 91, .	1.5	70
33	Monitoring of dynamic changes in Keyhole Limpet Hemocyanin (KLH)-specific B cells in KLH-vaccinated cancer patients. Scientific Reports, 2017, 7, 43486.	1.6	16
34	A membrane-anchored aptamer sensor for probing IFNÎ ³ secretion by single cells. Chemical Communications, 2017, 53, 8066-8069.	2.2	58
35	Opportunities for immunotherapy in microsatellite instable colorectal cancer. Cancer Immunology, Immunotherapy, 2016, 65, 1249-1259.	2.0	67
36	Virus-Like Particles Displaying Trimeric Simian Immunodeficiency Virus (SIV) Envelope gp160 Enhance the Breadth of DNA/Modified Vaccinia Virus Ankara SIV Vaccine-Induced Antibody Responses in Rhesus Macaques. Journal of Virology, 2016, 90, 8842-8854.	1.5	34

FLORIAN WIMMERS

#	Article	IF	CITATIONS
37	The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation. Nature, 2016, 531, 523-527.	13.7	221
38	Long-lasting multifunctional CD8 ⁺ T cell responses in end-stage melanoma patients can be induced by dendritic cell vaccination. Oncolmmunology, 2016, 5, e1067745.	2.1	55
39	Effective Clinical Responses in Metastatic Melanoma Patients after Vaccination with Primary Myeloid Dendritic Cells. Clinical Cancer Research, 2016, 22, 2155-2166.	3.2	211
40	Characterization and Implementation of a Diverse Simian Immunodeficiency Virus SIVsm Envelope Panel in the Assessment of Neutralizing Antibody Breadth Elicited in Rhesus Macaques by Multimodal Vaccines Expressing the SIVmac239 Envelope. Journal of Virology, 2015, 89, 8130-8151.	1.5	35
41	Systems Analysis of Immunity to Influenza Vaccination across Multiple Years and in Diverse Populations Reveals Shared Molecular Signatures. Immunity, 2015, 43, 1186-1198.	6.6	286
42	Paradigm Shift in Dendritic Cell-Based Immunotherapy: From in vitro Generated Monocyte-Derived DCs to Naturally Circulating DC Subsets. Frontiers in Immunology, 2014, 5, 165.	2.2	127
43	Dendritic Cell Cross Talk with Innate and Innate-like Effector Cells in Antitumor Immunity: Implications for DC Vaccination. Critical Reviews in Immunology, 2014, 34, 517-536.	1.0	40
44	Early predictive value of multifunctional skin-infiltrating lymphocytes in anticancer immunotherapy. Oncolmmunology, 2014, 3, e27219.	2.1	3
45	Molecular signatures of antibody responses derived from a systems biology study of five human vaccines. Nature Immunology, 2014, 15, 195-204.	7.0	672
46	TLR5-Mediated Sensing of Gut Microbiota Is Necessary for Antibody Responses to Seasonal Influenza Vaccination. Immunity, 2014, 41, 478-492.	6.6	444
47	Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics. Lab on A Chip, 2013, 13, 4740.	3.1	204
48	Systems biology of vaccination for seasonal influenza in humans. Nature Immunology, 2011, 12, 786-795.	7.0	749
49	Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nature Immunology, 2009, 10, 116-125.	7.0	1,019
50	Learning immunology from the yellow fever vaccine: innate immunity to systems vaccinology. Nature Reviews Immunology, 2009, 9, 741-747.	10.6	251
51	Toll-like receptor–mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI(3)K-mTOR-p70S6K pathway. Nature Immunology, 2008, 9, 1157-1164.	7.0	346
52	Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. Journal of Experimental Medicine, 2006, 203, 413-424.	4.2	474
53	Immunobiology of Dendritic Cells. Annual Review of Immunology, 2000, 18, 767-811.	9.5	5,918