
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5497908/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SARS-CoV-2 wastewater surveillance data can predict hospitalizations and ICU admissions. Science of the Total Environment, 2022, 804, 150151.	8.0	116
2	Changes in Sewage Sludge Chemical Signatures During a COVIDâ€19 Community Lockdown, Part 1: Traffic, Drugs, Mental Health, and Disinfectants. Environmental Toxicology and Chemistry, 2022, 41, 1179-1192.	4.3	22
3	Development and Application of a Polydimethylsiloxane-Based Passive Air Sampler to Assess Personal Exposure to SARS-CoV-2. Environmental Science and Technology Letters, 2022, 9, 153-159.	8.7	18
4	Predicting daily COVID-19 case rates from SARS-CoV-2 RNA concentrations across a diversity of wastewater catchments. FEMS Microbes, 2022, 2, xtab022.	2.1	19
5	Scaling SARS-CoV-2 wastewater concentrations to population estimates of infection. Scientific Reports, 2022, 12, 3487.	3.3	10
6	Why Indoor Chemistry Matters: A National Academies Consensus Report. Environmental Science & Technology, 2022, 56, 10560-10563.	10.0	12
7	An accessible method for screening aerosol filtration identifies poor-performing commercial masks and respirators. Journal of Exposure Science and Environmental Epidemiology, 2021, 31, 943-952.	3.9	15
8	Aligning SARS-CoV-2 indicators via an epidemic model: application to hospital admissions and RNA detection in sewage sludge. Health Care Management Science, 2021, 24, 320-329.	2.6	51
9	Practitioner-driven research for improving the outcomes of mold inspection and remediation. Science of the Total Environment, 2021, 762, 144190.	8.0	1
10	Occurrence of respiratory viruses on school desks. American Journal of Infection Control, 2021, 49, 464-468.	2.3	8
11	A paradigm shift to combat indoor respiratory infection. Science, 2021, 372, 689-691.	12.6	192
12	Evaluating Indoor Air Chemical Diversity, Indoor-to-Outdoor Emissions, and Surface Reservoirs Using High-Resolution Mass Spectrometry. Environmental Science & Technology, 2021, 55, 10255-10267.	10.0	14
13	The climate and health benefits from intensive building energy efficiency improvements. Science Advances, 2021, 7, .	10.3	20
14	How Narrow Is the Gas Phase Mobility Distribution of Enveloped Viruses? The Case of the $\hat{\sf l} 6$ Bacteriophage. Analytical Chemistry, 2021, 93, 12938-12943.	6.5	3
15	Development of CRISPR-Cas9 knock-in tools for free fatty acid production using the fast-growing cyanobacterial strain Synechococcus elongatus UTEX 2973. Journal of Microbiological Methods, 2021, 189, 106315.	1.6	12
16	Changes in Sewage Sludge Chemical Signatures During a COVIDâ€19 Community Lockdown, Part 2: Nontargeted Analysis of Sludge and Evaluation with COVIDâ€19 Metrics. Environmental Toxicology and Chemistry, 2021, , .	4.3	4
17	Bacterial and fungal ecology on air conditioning cooling coils is influenced by climate and building factors. Indoor Air, 2020, 30, 326-334.	4.3	17
18	Measurement of SARS-CoV-2 RNA in wastewater tracks community infection dynamics. Nature Biotechnology, 2020, 38, 1164-1167.	17.5	785

#	Article	IF	CITATIONS
19	DNA Sequence-Based Approach for Classifying the Mold Status of Buildings. Environmental Science & Technology, 2020, 54, 15968-15975.	10.0	7
20	COVID-19 vulnerability: the potential impact of genetic susceptibility and airborne transmission. Human Genomics, 2020, 14, 17.	2.9	95
21	How can airborne transmission of COVID-19 indoors be minimised?. Environment International, 2020, 142, 105832.	10.0	933
22	Wastewater-Based Epidemiology: Global Collaborative to Maximize Contributions in the Fight Against COVID-19. Environmental Science & amp; Technology, 2020, 54, 7754-7757.	10.0	337
23	The impact of ventilation rate on the fungal and bacterial ecology of home indoor air. Building and Environment, 2020, 177, 106800.	6.9	35
24	1,4-Dioxane as an emerging water contaminant: State of the science and evaluation of research needs. Science of the Total Environment, 2019, 690, 853-866.	8.0	85
25	Cryopreservation of Synechococcus elongatus UTEX 2973. Journal of Applied Phycology, 2019, 31, 2267-2276.	2.8	5
26	Spatial Gradients of Fungal Abundance and Ecology throughout a Damp Building. Environmental Science and Technology Letters, 2019, 6, 329-333.	8.7	16
27	Degradation of phthalate esters in floor dust at elevated relative humidity. Environmental Sciences: Processes and Impacts, 2019, 21, 1268-1279.	3.5	35
28	Comparing bacterial, fungal, and human cell concentrations with rapid adenosine triphosphate measurements for indicating microbial surface contamination. American Journal of Infection Control, 2019, 47, 671-676.	2.3	6
29	Gene expression of indoor fungal communities under damp building conditions: Implications for human health. Indoor Air, 2018, 28, 548-558.	4.3	34
30	The reestablishment of microbial communities after surface cleaning in schools. Journal of Applied Microbiology, 2018, 125, 897-906.	3.1	19
31	Building and environmental factors that influence bacterial and fungal loading on air conditioning cooling coils. Indoor Air, 2018, 28, 689-696.	4.3	25
32	Global Survey of Antibiotic Resistance Genes in Air. Environmental Science & Technology, 2018, 52, 10975-10984.	10.0	227
33	Selectively biorefining astaxanthin and triacylglycerol co-products from microalgae with supercritical carbon dioxide extraction. Bioresource Technology, 2018, 269, 81-88.	9.6	33
34	Fungal and bacterial growth in floor dust at elevated relative humidity levels. Indoor Air, 2017, 27, 354-363.	4.3	108
35	Indoor/Outdoor Relationships and Anthropogenic Elemental Signatures in Airborne PM _{2.5} at a High School: Impacts of Petroleum Refining Emissions on Lanthanoid Enrichment. Environmental Science & Technology, 2017, 51, 4851-4859.	10.0	25
36	Buildings, Beneficial Microbes, and Health. Trends in Microbiology, 2016, 24, 595-597.	7.7	27

#	Article	IF	CITATIONS
37	Ammonia inhibition in oleaginous microalgae. Algal Research, 2016, 19, 123-127.	4.6	115
38	Indoor microbial communities: Influence on asthma severity in atopic and nonatopic children. Journal of Allergy and Clinical Immunology, 2016, 138, 76-83.e1.	2.9	117
39	Influence of housing characteristics on bacterial and fungal communities in homes of asthmatic children. Indoor Air, 2016, 26, 179-192.	4.3	147
40	Characterizing airborne fungal and bacterial concentrations and emission rates in six occupied children's classrooms. Indoor Air, 2015, 25, 641-652.	4.3	118
41	Using carbon dioxide to maintain an elevated oleaginous microalga concentration in mixed-culture photo-bioreactors. Bioresource Technology, 2015, 185, 178-184.	9.6	11
42	We Should Expect More out of Our Sewage Sludge. Environmental Science & Technology, 2015, 49, 8271-8276.	10.0	218
43	Indoor Emissions as a Primary Source of Airborne Allergenic Fungal Particles in Classrooms. Environmental Science & Technology, 2015, 49, 5098-5106.	10.0	73
44	Untangling the fungal niche: the trait-based approach. Frontiers in Microbiology, 2014, 5, 579.	3.5	211
45	Identification accuracy and diversity reproducibility associated with internal transcribed spacerâ€based fungal taxonomic library preparation. Environmental Microbiology, 2014, 16, 2764-2776.	3.8	14
46	Fungal Highâ€ŧhroughput Taxonomic Identification tool for use with Nextâ€Generation Sequencing (FHiTINGS). Journal of Basic Microbiology, 2014, 54, 315-321.	3.3	60
47	Next-generation DNA sequencing reveals that low fungal diversity in house dust is associated with childhood asthma development. Indoor Air, 2014, 24, 236-247.	4.3	144
48	Combining real-time PCR and next-generation DNA sequencing to provide quantitative comparisons of fungal aerosol populations. Atmospheric Environment, 2014, 84, 113-121.	4.1	114
49	Hand bacterial communities vary across two different human populations. Microbiology (United) Tj ETQq1 1 0.78	4314 rgB ⁻ 1.8	T /Overlock 1
50	Assessing the aerodynamic diameters of taxon-specific fungal bioaerosols by quantitative PCR and next-generation DNA sequencing. Journal of Aerosol Science, 2014, 78, 1-10.	3.8	41
51	Walking-induced particle resuspension in indoor environments. Atmospheric Environment, 2014, 89, 464-481.	4.1	226
52	Identification of Viral Pathogen Diversity in Sewage Sludge by Metagenome Analysis. Environmental Science & Technology, 2013, 47, 1945-1951.	10.0	301
53	Changes in atmospheric <scp><scp>CO₂</scp> influence the allergenicity of <i><scp>A</scp>spergillus fumigatus</i>. Clobal Change Biology, 2013, 19, 2381-2388.</scp>	9.5	24
54	Influence of collection region and site type on the composition of paved road dust. Air Quality, Atmosphere and Health, 2013, 6, 615-628.	3.3	8

#	Article	IF	CITATIONS
55	Prevalence of respiratory adenovirus species B and C in sewage sludge. Environmental Sciences: Processes and Impacts, 2013, 15, 336-338.	3.5	23
56	Modeling human off-site aerosol exposures to polybrominated flame retardants emitted during the land application of sewage sludge. Environment International, 2013, 60, 232-241.	10.0	5
57	Predicting Contaminant Adsorption in Black Carbon (Biochar)-Amended Soil for the Veterinary Antimicrobial Sulfamethazine. Environmental Science & Technology, 2013, 47, 6197-6205.	10.0	104
58	Nitrogen supply is an important driver of sustainable microalgae biofuel production. Trends in Biotechnology, 2013, 31, 134-138.	9.3	178
59	Suppression of methanogenesis in cellulose-fed microbial fuel cells in relation to performance, metabolite formation, and microbial population. Bioresource Technology, 2013, 129, 281-288.	9.6	77
60	Convergent development of anodic bacterial communities in microbial fuel cells. ISME Journal, 2012, 6, 2002-2013.	9.8	190
61	Annual distribution of allergenic fungal spores in atmospheric particulate matter in the Eastern Mediterranean; a comparative study between ergosterol and quantitative PCR analysis. Atmospheric Chemistry and Physics, 2012, 12, 2681-2690.	4.9	52
62	Associations between Quantitative Measures of Fungi in Home Floor Dust and Lung Function among Older Adults with Chronic Respiratory Disease: A Pilot Study. Journal of Asthma, 2012, 49, 502-509.	1.7	15
63	Fecal coliform population dynamics associated with the thermophilic stabilization of treated sewage sludge. Journal of Environmental Monitoring, 2012, 14, 2755.	2.1	5
64	Particle-size distributions and seasonal diversity of allergenic and pathogenic fungi in outdoor air. ISME Journal, 2012, 6, 1801-1811.	9.8	211
65	Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation. Biotechnology for Biofuels, 2012, 5, 74.	6.2	178
66	Emerging Pollutants – Part I: Occurrence, Fate and Transport. Water Environment Research, 2012, 84, 1878-1908.	2.7	10
67	Sizeâ€resolved emission rates of airborne bacteria and fungi in an occupied classroom. Indoor Air, 2012, 22, 339-351.	4.3	315
68	Human Occupancy as a Source of Indoor Airborne Bacteria. PLoS ONE, 2012, 7, e34867.	2.5	404
69	Toward a Consensus View on the Infectious Risks Associated with Land Application of Sewage Sludge. Environmental Science & Technology, 2011, 45, 5459-5469.	10.0	100
70	Speciation of the Ionizable Antibiotic Sulfamethazine on Black Carbon (Biochar). Environmental Science & Technology, 2011, 45, 10020-10027.	10.0	407
71	The allergenicity of Aspergillus fumigatus conidia is influenced by growth temperature. Fungal Biology, 2011, 115, 625-632.	2.5	29
72	Comparison of quantitative airborne fungi measurements by active and passive sampling methods. Journal of Aerosol Science, 2011, 42, 499-507.	3.8	39

#	Article	IF	CITATIONS
73	Net energy production associated with pathogen inactivation during mesophilic and thermophilic anaerobic digestion of sewage sludge. Water Research, 2011, 45, 4758-4768.	11.3	54
74	Viral metagenome analysis to guide human pathogen monitoring in environmental samples. Letters in Applied Microbiology, 2011, 52, 386-392.	2.2	90
75	Assessing allergenic fungi in house dust by floor wipe sampling and quantitative PCR. Indoor Air, 2011, 21, 521-530.	4.3	40
76	New Directions: A revolution in DNA sequencing now allows for the meaningful integration of biology with aerosol science. Atmospheric Environment, 2011, 45, 1896-1897.	4.1	36
77	Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: Pathway description and gene discovery for production of next-generation biofuels. BMC Genomics, 2011, 12, 148.	2.8	258
78	Next-Generation DNA Sequencing Identifies Pathogens in Biosolids. Proceedings of the Water Environment Federation, 2010, 2010, 5606-5613.	0.0	0
79	Accuracy, Precision, and Method Detection Limits of Quantitative PCR for Airborne Bacteria and Fungi. Applied and Environmental Microbiology, 2010, 76, 7004-7012.	3.1	163
80	Challenges in Developing Biohydrogen as a Sustainable Energy Source: Implications for a Research Agenda. Environmental Science & Technology, 2010, 44, 2243-2254.	10.0	161
81	Respiratory Toxicity and Inflammatory Response in Human Bronchial Epithelial Cells Exposed to Biosolids, Animal Manure, and Agricultural Soil Particulate Matter. Environmental Science & Technology, 2010, 44, 3142-3148.	10.0	10
82	Pyrosequencing of the 16S rRNA gene to reveal bacterial pathogen diversity in biosolids. Water Research, 2010, 44, 4252-4260.	11.3	137
83	Survey of Wastewater Indicators and Human Pathogen Genomes in Biosolids Produced by Class A and Class B Stabilization Treatments. Applied and Environmental Microbiology, 2009, 75, 164-174.	3.1	95
84	DNA aptamers bind specifically and selectively to (1→3)-β-d-glucans. Biochemical and Biophysical Research Communications, 2009, 378, 701-705.	2.1	29
85	A DNA aptamer recognizes the Asp f 1 allergen of Aspergillus fumigatus. Biochemical and Biophysical Research Communications, 2009, 386, 544-548.	2.1	15
86	Evaluation of the enterococci indicator in biosolids using culture-based and quantitative PCR assays. Water Research, 2009, 43, 4878-4887.	11.3	37
87	A Role for Environmental Engineering and Science in Preventing Bioaerosol-Related Disease. Environmental Science & Technology, 2008, 42, 4631-4637.	10.0	42
88	Source Tracking Aerosols Released from Land-Applied Class B Biosolids during High-Wind Events. Applied and Environmental Microbiology, 2007, 73, 4522-4531.	3.1	67
89	Off-Site Exposure to Respirable Aerosols Produced during the Disk-Incorporation of Class B Biosolids. Journal of Environmental Engineering, ASCE, 2007, 133, 987-994.	1.4	19
90	Emission Rates and Characterization of Aerosols Produced During the Spreading of Dewatered Class B Biosolids. Environmental Science & Technology, 2007, 41, 3537-3544.	10.0	51

#	Article	IF	CITATIONS
91	A Vista for Microbial Ecology and Environmental Biotechnology. Environmental Science & Technology, 2006, 40, 1096-1103.	10.0	118
92	Incorporating polymerase chain reaction-based identification, population characterization, and quantification of microorganisms into aerosol science: A review. Atmospheric Environment, 2006, 40, 3941-3961.	4.1	181
93	Particulate matter composition and emission rates from the disk incorporation of class B biosolids into soil. Atmospheric Environment, 2006, 40, 7034-7045.	4.1	22
94	Estimating Solar and Nonsolar Inactivation Rates of Airborne Bacteria. Journal of Environmental Engineering, ASCE, 2005, 131, 512-517.	1.4	21
95	Source Bioaerosol Concentration and rRNA Gene-Based Identification of Microorganisms Aerosolized at a Flood Irrigation Wastewater Reuse Site. Applied and Environmental Microbiology, 2005, 71, 804-810.	3.1	51
96	Impact of Environmental Factors on Efficacy of Upper-Room Air Ultraviolet Germicidal Irradiation for Inactivating Airborne Mycobacteria. Environmental Science & Technology, 2005, 39, 9656-9664.	10.0	86
97	Correlating bioaerosol load with PM2.5 and PM10cf concentrations: a comparison between natural desert and urban-fringe aerosols. Atmospheric Environment, 2004, 38, 6029-6041.	4.1	87
98	UV-Induced Inactivation Rates for AirborneMycobacterium bovisBCG. Journal of Occupational and Environmental Hygiene, 2004, 1, 430-435.	1.0	36
99	Efficacy of ultraviolet germicidal irradiation of upper-room air in inactivating airborne bacterial spores and mycobacteria in full-scale studies. Atmospheric Environment, 2003, 37, 405-419.	4.1	136
100	Rapid Immunoassays for Detection of UV-Induced Cyclobutane Pyrimidine Dimers in Whole Bacterial Cells. Applied and Environmental Microbiology, 2002, 68, 2542-2549.	3.1	20
101	Physical Enrichment of Polyphosphate-Accumulating Organisms in Activated Sludge. Water Environment Research, 2002, 74, 354-361.	2.7	17
102	Microbiology of Enhanced Biological Phosphorus Removal in Aerated-Anoxic Orbal Processes. Water Environment Research, 2002, 74, 428-436.	2.7	28
103	Involvement of Rhodocyclus-Related Organisms in Phosphorus Removal in Full-Scale Wastewater Treatment Plants. Applied and Environmental Microbiology, 2002, 68, 2763-2769.	3.1	197
104	In situ assessment of active Thiobacillus species in corroding concrete sewers using fluorescent RNA probes. International Biodeterioration and Biodegradation, 2002, 49, 271-276.	3.9	59
105	Photoreactivation in Airborne Mycobacterium parafortuitum. Applied and Environmental Microbiology, 2001, 67, 4225-4232.	3.1	60
106	Effects of Relative Humidity on the Ultraviolet Induced Inactivation of Airborne Bacteria. Aerosol Science and Technology, 2001, 35, 728-740.	3.1	150
107	Development and Application of Small-Subunit rRNA Probes for Assessment of Selected Thiobacillus Species and Members of the Genus Acidiphilium. Applied and Environmental Microbiology, 2000, 66, 3065-3072.	3.1	73