Antonio E Palomares

List of Publications by Citations

Source: https://exaly.com/author-pdf/5497192/antonio-e-palomares-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

73
papers

2,017
citations

26
h-index
g-index

76
ext. papers

2,242
ext. citations

8.3
avg, IF
L-index

#	Paper	IF	Citations
73	Cu-SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx. <i>Chemical Communications</i> , 2012 , 48, 8264-6	5.8	169
72	Using the Themory effectIbf hydrotalcites for improving the catalytic reduction of nitrates in water. <i>Journal of Catalysis</i> , 2004 , 221, 62-66	7.3	110
71	Simultaneous Catalytic Removal of SOxand NOxwith Hydrotalcite-Derived Mixed Oxides Containing Copper, and Their Possibilities to Be Used in FCC Units. <i>Journal of Catalysis</i> , 1997 , 170, 140-149	7.3	96
70	Reactivity in the removal of SO2 and NOx on Co/Mg/Al mixed oxides derived from hydrotalcites. <i>Applied Catalysis B: Environmental</i> , 1999 , 20, 257-266	21.8	92
69	Alkylation of Toluene over Basic Catalystskey Requirements for Side Chain Alkylation. <i>Journal of Catalysis</i> , 1998 , 180, 56-65	7.3	86
68	Selective catalytic reduction of NOx on Cu-beta zeolites. <i>Applied Catalysis B: Environmental</i> , 1997 , 11, 233-242	21.8	83
67	Selective Alkylation of Toluene over Basic Zeolites: Anin SituInfrared Spectroscopic Investigation. <i>Journal of Catalysis</i> , 1997 , 168, 442-449	7.3	76
66	Denitrification of natural water on supported Pd/Cu catalysts. <i>Applied Catalysis B: Environmental</i> , 2003 , 41, 3-13	21.8	74
65	Determining the Nature of the Active Sites of Cu-Beta Zeolites for the Selective Catalytic Reduction (SCR) of NOxby Using a Coupled Reaction-XAES/XPS Study. <i>Journal of Catalysis</i> , 1997 , 170, 132-139	7.3	70
64	Cu and Co modified beta zeolite catalysts for the trichloroethylene oxidation. <i>Applied Catalysis B: Environmental</i> , 2016 , 187, 90-97	21.8	68
63	Interaction of Methanol with Alkali Metal Exchanged Molecular Sieves. 1. IR Spectroscopic Study. Journal of Physical Chemistry B, 2000 , 104, 8624-8630	3.4	57
62	Nitrates removal from polluted aquifers using (Sn or Cu)/Pd catalysts in a continuous reactor. <i>Catalysis Today</i> , 2010 , 149, 348-351	5.3	53
61	Cu and Fe modified derivatives of 2D MWW-type zeolites (MCM-22, ITQ-2 and MCM-36) as new catalysts for DeNOx process. <i>Applied Catalysis B: Environmental</i> , 2015 , 168-169, 531-539	21.8	47
60	Bromate catalytic reduction in continuous mode using metal catalysts supported on monoliths coated with carbon nanofibers. <i>Chemical Engineering Journal</i> , 2013 , 230, 605-611	14.7	45
59	On the researching of a new zeolite structure for the selective catalytic reduction of NO: The possibilities of Cu-exchanged IM5. <i>Journal of Molecular Catalysis A</i> , 2000 , 162, 175-189		44
58	Optimization of SOx additives of FCC catalysts based on MgO-Al2O3 mixed oxides produced from hydrotalcites. <i>Applied Catalysis B: Environmental</i> , 1994 , 4, 29-43	21.8	44
57	NOx storage/reduction catalysts based in cobalt/copper hydrotalcites. <i>Catalysis Today</i> , 2008 , 137, 261-	2 6 63	41

56	Hydrotalcite-derived mixed oxides containing copper: catalysts for the removal of nitric oxide. Journal of the Chemical Society, Faraday Transactions, 1996 , 92, 4331		38	
55	Characterisation of the active copper species for the NOx removal on Cu/Mg/Al mixed oxides derived from hydrotalcites: an in situ XPS/XAES study. <i>Journal of Materials Chemistry</i> , 2001 , 11, 1675-16	80	34	
54	Efficient reduction of bromates using carbon nanofibre supported catalysts: Experimental and a comparative life cycle assessment study. <i>Chemical Engineering Journal</i> , 2014 , 248, 230-241	14.7	32	
53	The use of Pd catalysts on carbon-based structured materials for the catalytic hydrogenation of bromates in different types of water. <i>Applied Catalysis B: Environmental</i> , 2014 , 146, 186-191	21.8	30	
52	The oxidation of trichloroethylene over different mixed oxides derived from hydrotalcites. <i>Applied Catalysis B: Environmental</i> , 2014 , 160-161, 129-134	21.8	30	
51	Copper sites in zeolites - quantitative IR studies. <i>Microporous and Mesoporous Materials</i> , 2012 , 162, 175-	1589	30	
50	A study of different supports for the catalytic reduction of nitrates from natural water with a continuous reactor. <i>Catalysis Today</i> , 2011 , 172, 90-94	5.3	28	
49	Cu Mixed Oxides Based on Hydrotalcite-Like Compounds for the Oxidation of Trichloroethylene. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 15772-15779	3.9	27	
48	Structured fibrous carbon-based catalysts for continuous nitrate removal from natural water. <i>Applied Catalysis B: Environmental</i> , 2012 , 123-124, 221-228	21.8	26	
47	CuNi/Al hydrotalcites synthesized in presence of microwave irradiation. <i>Materials Letters</i> , 2011 , 65, 1663	33.13665	5 25	
46	Study of propane oxidation on Cu-zeolite catalysts by in-situ EPR and IR spectroscopies. <i>Catalysis Today</i> , 2014 , 227, 123-129	5.3	24	
45	Characterization of (Sn and Cu)/Pd catalysts for the nitrate reduction in natural water. <i>Applied Catalysis A: General</i> , 2012 , 425-426, 145-152	5.1	24	
44	A comparative study on the activity of metal exchanged MCM22 zeolite in the selective catalytic reduction of NOx. <i>Research on Chemical Intermediates</i> , 1998 , 24, 613-623	2.8	22	
43	Evidence of a Cu2+Alkane Interaction in Cu-Zeolite Catalysts Crucial for the Selective Catalytic Reduction of NOx with Hydrocarbons. <i>ACS Catalysis</i> , 2017 , 7, 3501-3509	13.1	20	
42	Nanostructured Catalysts for the Continuous Reduction of Nitrates and Bromates in Water. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 13930-13937	3.9	20	
41	Ag-zeolites as fungicidal material: Control of citrus green mold caused by Penicillium digitatum. <i>Microporous and Mesoporous Materials</i> , 2017 , 254, 69-76	5.3	19	
40	Catalytic abatement of trichloroethylene over Mo and/or W-based bronzes. <i>Applied Catalysis B: Environmental</i> , 2013 , 130-131, 36-43	21.8	19	
39	Catalysts based on tin and beta zeolite for the reduction of NOx under lean conditions in the presence of water. <i>Applied Catalysis B: Environmental</i> , 2007 , 75, 88-94	21.8	19	

38	Ce-modified zeolite BEA catalysts for the trichloroethylene oxidation. The role of the different and necessary active sites. <i>Applied Catalysis B: Environmental</i> , 2019 , 259, 118022	21.8	16
37	Determining the characteristics of a Co-zeolite to be active for the selective catalytic reduction of NOx with hydrocarbons. <i>Catalysis Today</i> , 2011 , 176, 239-241	5.3	16
36	Simulation of catalytic reduction of nitrates based on a mechanistic model. <i>Chemical Engineering Journal</i> , 2011 , 175, 458-467	14.7	16
35	An in situ XAS study of the activation of precursor-dependent Pd nanoparticles. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 12700-12709	3.6	15
34	Preparation of layered double hydroxide/chlorophyll a hybrid nano-antennae: a key step. <i>Dalton Transactions</i> , 2014 , 43, 10521-8	4.3	15
33	NOx storage/reduction catalysts based on Mg/Zn/Al/Fe hydrotalcite-like materials. <i>Chemical Engineering Journal</i> , 2013 , 231, 273-280	14.7	15
32	Catalytic reduction of nitrates in natural water: is this a realistic objective?. <i>Journal of Catalysis</i> , 2004 , 227, 561-562	7.3	15
31	Co-Exchanged IM5, a Stable Zeolite for the Selective Catalytic Reduction of NO in the Presence of Water and SO2. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 1538-1542	3.9	14
30	Multifunctional catalyst for maximizing NOx oxidation/storage/reduction: The role of the different active sites. <i>Applied Catalysis B: Environmental</i> , 2013 , 142-143, 795-800	21.8	13
29	Selective catalytic reduction of nitric oxide with ammonia over Fe-Cu modified highly silicated zeolites. <i>Solid State Sciences</i> , 2018 , 84, 75-85	3.4	12
28	TNU-9, a new zeolite for the selective catalytic reduction of NO: An in situ X-ray absorption spectroscopy study. <i>Journal of Catalysis</i> , 2012 , 295, 22-30	7.3	12
27	Ferrierite and Its Delaminated and Silica-Intercalated Forms Modified with Copper as Effective Catalysts for NH3-SCR Process. <i>Catalysts</i> , 2020 , 10, 734	4	12
26	A Novel Synthetic Route to Prepare High Surface Area Mayenite Catalyst for TCE Oxidation. <i>Catalysts</i> , 2019 , 9, 27	4	11
25	Catalytic oxidation of organic sulfides by H2O2 in the presence of titanosilicate zeolites. <i>Microporous and Mesoporous Materials</i> , 2020 , 302, 110219	5.3	11
24	MCM-22, MCM-36, and ITQ-2 Zeolites with Different Si/Al Molar Ratios as Effective Catalysts of Methanol and Ethanol Dehydration. <i>Materials</i> , 2020 , 13,	3.5	10
23	NOx selective catalytic reduction at high temperatures with mixed oxides derived from layered double hydroxides. <i>Catalysis Today</i> , 2012 , 191, 47-51	5.3	8
22	Oxidative Degradation of Trichloroethylene over Fe2O3-doped Mayenite: Chlorine Poisoning Mitigation and Improved Catalytic Performance. <i>Catalysts</i> , 2019 , 9, 747	4	7
21	Influence of the synthesis method on the catalytic activity of mayenite for the oxidation of gas-phase trichloroethylene. <i>Scientific Reports</i> , 2019 , 9, 425	4.9	7

(2021-2020)

20	Silver exchanged zeolites as bactericidal additives in polymeric materials. <i>Microporous and Mesoporous Materials</i> , 2020 , 305, 110367	5.3	7
19	A new active zeolite structure for the selective catalytic reduction (SCR) of nitrogen oxides: ITQ7 zeolite: The influence of NO2 on this reaction. <i>Catalysis Today</i> , 2002 , 75, 367-371	5.3	7
18	The Influence of the Support on the Activity of MnHe Catalysts Used for the Selective Catalytic Reduction of NOx with Ammonia. <i>Catalysts</i> , 2020 , 10, 63	4	6
17	Functional Ag-Exchanged Zeolites as Biocide Agents. <i>ChemistrySelect</i> , 2018 , 3, 4676-4682	1.8	6
16	Evaluation of the silver species nature in Ag-ITQ2 zeolites by the CO oxidation reaction. <i>Catalysis Today</i> , 2020 , 345, 22-26	5.3	6
15	Integrating sustainable development in chemical engineering education: the application of an environmental management system. <i>Chemistry Education Research and Practice</i> , 2012 , 13, 128-134	2.1	5
14	Active Catalysts for the NO x Reduction in a FCC unit. <i>Topics in Catalysis</i> , 2009 , 52, 1060-1064	2.3	5
13	Nature and evolution of Pd catalysts supported on activated carbon fibers during the catalytic reduction of bromate in water. <i>Catalysis Science and Technology</i> , 2020 , 10, 3646-3653	5.5	4
12	Ferrierite and Its Delaminated Forms Modified with Copper as Effective Catalysts for NH-SCO Process. <i>Materials</i> , 2020 , 13,	3.5	4
11	Titanium-silicon ferrierites and their delaminated forms modified with copper as effective catalysts for low-temperature NH-SCR <i>RSC Advances</i> , 2021 , 11, 10847-10859	3.7	3
10	The Influence of the Support Nature and the Metal Precursor in the Activity of Pd-based Catalysts for the Bromate Reduction Reaction. <i>ChemCatChem</i> , 2021 , 13, 1230-1238	5.2	3
9	AgY zeolite as catalyst for the selective catalytic oxidation of NH3. <i>Microporous and Mesoporous Materials</i> , 2021 , 323, 111230	5.3	3
8	A short review about NOx storage-reduction catalysts based on metal oxides and hydrotalcite-type anionic clays. <i>Acta Geodynamica Et Geomaterialia</i> , 2013 , 175-186	1	2
7	A Review on the Catalytic Hydrogenation of Bromate in Water Phase. <i>Catalysts</i> , 2021 , 11, 365	4	2
6	AgAu nanoclusters supported on zeolites: Structural dynamics during CO oxidation. <i>Catalysis Today</i> , 2021 , 384-386, 166-166	5.3	2
5	Catalytic Removal of Bromates from Water: A Hands-On Laboratory Experiment to Solve a Water Pollution Problem through Catalysis. <i>Journal of Chemical Education</i> , 2021 , 98, 1726-1731	2.4	2
4	EXFAS electron spectroscopy as a new tool of local characterisation of copper in Cu-Beta zeolite. <i>Solid State Sciences</i> , 2001 , 3, 637-640	3.4	1
3	Zeolite-driven Ag species during redox treatments and catalytic implications for SCO of NH3. Journal of Materials Chemistry A, 2021 , 9, 27448-27458	13	1

A new metal exchanged zeolite for a present environmental problem. An in-situ XAS study. *Journal of Physics: Conference Series*, **2013**, 430, 012055

0.3

Sorption of methanol in alkali exchanged zeolites. *Studies in Surface Science and Catalysis*, **2000**, 130, 2957-2962

1.8