
Xiangzhou Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5497078/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Machine learning exploration of the direct and indirect roles of Fe impregnation on Cr(VI) removal by engineered biochar. Chemical Engineering Journal, 2022, 428, 131967.	6.6	50
2	Special issue on biochar technologies, production, and environmental applications in <i>Critical Reviews in Environmental Science & Technology</i> during 2017–2021. Critical Reviews in Environmental Science and Technology, 2022, 52, 3375-3383.	6.6	7
3	Co-liquefaction of mixed biomass feedstocks for bio-oil production: A critical review. Renewable and Sustainable Energy Reviews, 2022, 154, 111814.	8.2	33
4	Pyrolysis of waste surgical masks into liquid fuel and its life-cycle assessment. Bioresource Technology, 2022, 346, 126582.	4.8	62
5	Adsorption mechanism of polycyclic aromatic hydrocarbons using wood waste-derived biochar. Journal of Hazardous Materials, 2022, 425, 128003.	6.5	58
6	Priorities for biomass. One Earth, 2022, 5, 3-6.	3.6	4
7	Sustainability-inspired upcycling of waste polyethylene terephthalate plastic into porous carbon for CO ₂ capture. Green Chemistry, 2022, 24, 1494-1504.	4.6	51
8	Preliminary experimental study on the performance of CO2 capture prototype based on temperature swing adsorption (TSA). Carbon Capture Science & Technology, 2022, 2, 100035.	4.9	12
9	Prediction of Soil Heavy Metal Immobilization by Biochar Using Machine Learning. Environmental Science & Technology, 2022, 56, 4187-4198.	4.6	138
10	Transformation behavior and fate of chlorine in polychloroprene (PCP) during its pyrolysis. Fuel, 2022, 317, 123573.	3.4	17
11	Diamond in the rough: Polishing waste polyethylene terephthalate into activated carbon for CO2 capture. Science of the Total Environment, 2022, 834, 155262.	3.9	4
12	Recent advancements in sustainable upcycling of solid waste into porous carbons for carbon dioxide capture. Renewable and Sustainable Energy Reviews, 2022, 162, 112413.	8.2	30
13	Engineered biochar as a potential adsorbent for carbon dioxide capture. , 2022, , 345-359.		1
14	Sustainable management of plastic wastes in COVID-19 pandemic: The biochar solution. Environmental Research, 2022, 212, 113495.	3.7	31
15	Thermodynamic carbon pump 2.0: Elucidating energy efficiency through the thermodynamic cycle. Energy, 2021, 215, 119155.	4.5	4
16	Dual closed-loop chemical recycling support sustainable mitigation of plastic pollution. Matter, 2021, 4, 1095-1097.	5.0	6
17	Cooperation between hydrogenation and acidic sites in Cu-based catalyst for selective conversion of furfural to Î ³ -valerolactone. Fuel, 2021, 293, 120457.	3.4	38
18	Selective Conversion of Furfural into Diols over Co-Based Catalysts: Importance of the Coordination of Hydrogenation Sites and Basic Sites. Industrial & Engineering Chemistry Research, 2021, 60, 10393-10406.	1.8	21

XIANGZHOU YUAN

#	Article	IF	CITATIONS
19	Applied Machine Learning for Prediction of CO ₂ Adsorption on Biomass Waste-Derived Porous Carbons. Environmental Science & Technology, 2021, 55, 11925-11936.	4.6	132
20	lonic liquid coupled with nickel salt for enhancing the hydro-liquefaction efficiency of the major biomass components. Renewable Energy, 2021, 175, 296-306.	4.3	3
21	Co-hydrothermal carbonization of swine and chicken manure: Influence of cross-interaction on hydrochar and liquid characteristics. Science of the Total Environment, 2021, 786, 147381.	3.9	38
22	The COVID-19 pandemic necessitates a shift to a plastic circular economy. Nature Reviews Earth & Environment, 2021, 2, 659-660.	12.2	92
23	Recycling Polymeric Solid Wastes for Energyâ€Efficient Water Purification, Organic Distillation, and Oil Spill Cleanup. Small, 2021, 17, e2102459.	5.2	11
24	Carbon precursors in coal tar: Extraction and preparation of carbon materials. Science of the Total Environment, 2021, 788, 147697.	3.9	15
25	Synergistic and competitive effect of H2O on CO2 adsorption capture: Mechanism explanations based on molecular dynamic simulation. Journal of CO2 Utilization, 2021, 52, 101662.	3.3	16
26	Co-hydrothermal carbonization of swine manure and cellulose: Influence of mutual interaction of intermediates on properties of the products. Science of the Total Environment, 2021, 791, 148134.	3.9	16
27	Review on upgrading organic waste to value-added carbon materials for energy and environmental applications. Journal of Environmental Management, 2021, 296, 113128.	3.8	45
28	A review on biomass-derived CO2 adsorption capture: Adsorbent, adsorber, adsorption, and advice. Renewable and Sustainable Energy Reviews, 2021, 152, 111708.	8.2	47
29	Co-pyrolysis of swine manure and pinewood sawdust: Evidence of cross-interaction of the volatiles and profound impacts on product characteristics. Renewable Energy, 2021, 179, 1370-1384.	4.3	13
30	Physiologically based pharmacokinetic model revealed the distinct bio-transportation and turnover of arsenobetaine and arsenate in marine fish. Aquatic Toxicology, 2021, 240, 105991.	1.9	10
31	Recycling Polymeric Solid Wastes for Energyâ€Efficient Water Purification, Organic Distillation, and Oil Spill Cleanup (Small 46/2021). Small, 2021, 17, 2170244.	5.2	2
32	How to express the adsorbed CO2 with the Gibbs' thermodynamic graphical method: A preliminary study. Energy, 2020, 193, 116753.	4.5	4
33	Understanding the effect of H ₂ O on CO ₂ adsorption capture: mechanism explanation, quantitative approach and application. Sustainable Energy and Fuels, 2020, 4, 5970-5986.	2.5	20
34	Performance analysis of solar-assisted CO2 adsorption capture system based on dynamic simulation. Solar Energy, 2020, 209, 628-645.	2.9	13
35	Non-equilibrium thermodynamic analysis of adsorption carbon capture: Contributors, mechanisms and verification of entropy generation. Energy, 2020, 208, 118348.	4.5	8
36	Developing self-activated lignosulfonate-based porous carbon material for ethylene adsorption. Journal of the Taiwan Institute of Chemical Engineers, 2020, 115, 315-320.	2.7	13

XIANGZHOU YUAN

#	Article	IF	CITATIONS
37	Upcycling of waste polyethylene terephthalate plastic bottles into porous carbon for CF4 adsorption. Environmental Pollution, 2020, 265, 114868.	3.7	54
38	Valorization of waste polyethylene terephthalate plastic into N-doped microporous carbon for CO2 capture through a one-pot synthesis. Journal of Hazardous Materials, 2020, 399, 123010.	6.5	85
39	Solving two environmental issues simultaneously: Waste polyethylene terephthalate plastic bottle-derived microporous carbons for capturing CO2. Chemical Engineering Journal, 2020, 397, 125350.	6.6	98
40	Waste polyethylene terephthalate (PET) plastics-derived activated carbon for CO ₂ capture: a route to a closed carbon loop. Green Chemistry, 2020, 22, 6836-6845.	4.6	57
41	Application of the Thermodynamic Cycle to Assess the Energy Efficiency of Amine-Based Absorption of Carbon Capture. Energies, 2019, 12, 2504.	1.6	10
42	Entropy analysis on energy-consumption process and improvement method of temperature/vacuum swing adsorption (TVSA) cycle. Energy, 2019, 179, 876-889.	4.5	18
43	Numerical analysis on CO2 capture process of temperature swing adsorption (TSA): Optimization of reactor geometry. International Journal of Greenhouse Gas Control, 2019, 85, 187-198.	2.3	24
44	Removal of Cu(II) ions from aqueous solutions using petroleum coke-derived microporous carbon: investigation of adsorption equilibrium and kinetics. Adsorption, 2019, 25, 1205-1218.	1.4	19
45	Entropy Analysis of Temperature Swing Adsorption for CO2 Capture Using the Computational Fluid Dynamics (CFD) Method. Entropy, 2019, 21, 285.	1.1	5
46	Energy dissipation evaluation of temperature swing adsorption (TSA) cycle based on thermodynamic entropy insights. Scientific Reports, 2019, 9, 16599.	1.6	2
47	Investigation of Indonesian low rank coals gasification in a fixed bed reactor with K2CO3 catalyst loading. Journal of the Energy Institute, 2019, 92, 904-912.	2.7	7
48	Chemically activated microporous carbons derived from petroleum coke: Performance evaluation for CF4 adsorption. Chemical Engineering Journal, 2018, 336, 297-305.	6.6	54
49	Potassium catalyst recovery process and performance evaluation of the recovered catalyst in the K 2 CO 3 -catalyzed steam gasification system. Applied Energy, 2017, 195, 850-860.	5.1	30
50	Process modeling and performance evaluation of commercialâ€scale coalâ€toâ€SNG plant using Indonesia IBC coal with two drying concepts. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 1012-1026.	0.8	2
51	Gasification of Indonesian Sub-bituminous Coal with Different Gasifying Agents Using Ca and K Catalysts. Energy & Fuels, 2016, 30, 9372-9378.	2.5	8
52	Investigations of Both Catalytic Steam Gasification of Indonesian Lanna Coal and Potassium Catalyst Recovery Using K ₂ CO ₃ as a Catalyst. Energy & Fuels, 2016, 30, 2492-2502.	2.5	15
53	Effect of mineral components on sintering of ash particles at low temperature fouling conditions. Fuel Processing Technology, 2016, 141, 82-92.	3.7	15
54	Experimental and kinetic study of catalytic steam gasification of low rank coal with an environmentally friendly, inexpensive composite K 2 CO 3 –eggshell derived CaO catalyst. Fuel, 2016, 165, 397-404.	3.4	43

XIANGZHOU YUAN

#	Article	IF	CITATIONS
55	Effect of bed agglomeration by mineral component with different coal types. Journal of the Energy Institute, 2016, 89, 172-181.	2.7	11
56	Lab-scale investigations on catalyst recovery of gasified residue collected from the potassium-catalyzed steam gasification process. Fuel Processing Technology, 2016, 141, 44-53.	3.7	9
57	K ₂ CO ₃ â€Catalyzed Steam Gasification of Indonesian Lowâ€Rank Coal for H ₂ â€Rich Gas Production in a Fixed Bed Reactor. Energy Technology, 2015, 3, 527-534.	1.8	12
58	Reaction characteristics through catalytic steam gasification with ultra clean coal char and coal. Journal of the Energy Institute, 2014, 87, 253-262.	2.7	20