Jennifer G Cromley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5496855/publications.pdf

Version: 2024-02-01

45 papers

3,304 citations

331259 21 h-index 276539 41 g-index

45 all docs

45 docs citations

45 times ranked

2167 citing authors

#	Article	IF	CITATIONS
1	Multi-text multi-modal reading processes and comprehension. Learning and Instruction, 2021, 71, 101413.	1.9	2
2	What Cognitive Interviewing Reveals about a New Measure of Undergraduate Biology Reasoning. Journal of Experimental Education, 2021, 89, 145-168.	1.6	2
3	Deciding on drawing: the topic matters when using drawing as a science learning strategy. International Journal of Science Education, 2021, 43, 624-640.	1.0	4
4	Developing a Validity Argument for an Inference-Making and Reasoning Measure for Use in Higher Education. Frontiers in Education, 2021, 6, .	1.2	3
5	How Instructors Can Enhance Biology Students' Motivation, Learning, and Grades through Brief Relevance Writing and Worked-Example Interventions. Journal of Microbiology and Biology Education, 2021, 22, .	0.5	O
6	Development of a Tool to Assess Inference-Making and Reasoning in Biology. Journal of Microbiology and Biology Education, 2021, 22, .	0.5	1
7	Drawing-to-Learn: Does Meta-Analysis Show Differences Between Technology-Based Drawing and Paper-and-Pencil Drawing?. Journal of Science Education and Technology, 2020, 29, 216-229.	2.4	26
8	Relationships between the middle school concept and student demographics. Journal of Educational Administration, 2020, 58, 265-281.	0.8	1
9	Pickup of Causal Language and Inference During and After Reading Scientific Text. Reading Psychology, 2020, 41, 157-182.	0.7	1
10	Combined cognitive–motivational modules delivered via an LMS increase undergraduate biology grades Technology Mind and Behavior, 2020, 1, .	1.1	7
11	Supplemental Material for Combined cognitive–motivational modules delivered via an LMS increase undergraduate biology grades Technology Mind and Behavior, 2020, 1, .	1.1	O
12	Interrelations among expectancies, task values, and perceived costs in undergraduate biology achievement. Learning and Individual Differences, 2019, 72, 26-38.	1.5	53
13	Using principles of cognitive science to improve science learning in middle school: What works when and for whom?. Applied Cognitive Psychology, 2018, 32, 225-240.	0.9	4
14	Introduction to the special issue: Desiderata for a theory of multi-source multi-modal comprehension. Learning and Instruction, 2018, 57, 1-4.	1.9	5
15	Let Your Ideas Flow: Using Flowcharts to Convey Methods and Implications of the Results in Laboratory Exercises, Articles, Posters, and Slide Presentations. Journal of Microbiology and Biology Education, 2018, 19, .	0.5	5
16	Comparing and Contrasting Within Diagrams: An Effective Study Strategy. Lecture Notes in Computer Science, 2018, , 492-499.	1.0	3
17	Relation of Spatial Skills to Calculus Proficiency: A Brief Report. Mathematical Thinking and Learning, 2017, 19, 55-68.	0.7	13
18	Coordinating multiple representations of polynomials: What do patterns in students' solution strategies reveal?. Learning and Instruction, 2017, 49, 131-141.	1.9	1

#	Article	IF	CITATIONS
19	Undergraduate STEM Achievement and Retention. Policy Insights From the Behavioral and Brain Sciences, 2016, 3, 4-11.	1.4	96
20	Improving Middle School Science Learning Using Diagrammatic Reasoning. Science Education, 2016, 100, 1184-1213.	1.8	21
21	Flexible strategy use by students who learn much versus little from text: transitions within thinkâ€aloud protocols. Journal of Research in Reading, 2016, 39, 50-71.	1.0	16
22	Coordinating Multiple Representations in a Reform Calculus Textbook. International Journal of Science and Mathematics Education, 2016, 14, 1475-1497.	1.5	16
23	Using diagrams versus text for spaced restudy: Effects on learning in 10th grade biology classes. British Journal of Educational Psychology, 2015, 85, 59-74.	1.6	17
24	Teaching High School Biology Students to Coordinate Text and Diagrams: Relations with Transfer, Effort, and Spatial Skill. International Journal of Science Education, 2015, 37, 2476-2502.	1.0	23
25	English Language Learners' Pathways to Four-Year Colleges. Teachers College Record, 2015, 117, 1-44.	0.4	30
26	The role of identity development, values, and costs in college STEM retention Journal of Educational Psychology, 2014, 106, 315-329.	2.1	364
27	Changes in implicit theories of ability in biology and dropout from STEM majors: A latent growth curve approach. Contemporary Educational Psychology, 2014, 39, 233-247.	1.6	80
28	Effects of three diagram instruction methods on transfer of diagram comprehension skills: The critical role of inference while learning. Learning and Instruction, 2013, 26, 45-58.	1.9	56
29	English Language Learners' Access to and Attainment in Postsecondary Education. TESOL Quarterly, 2013, 47, 89-121.	1.5	77
30	Changes in race and sex stereotype threat among diverse STEM students: Relation to grades and retention in the majors. Contemporary Educational Psychology, 2013, 38, 247-258.	1.6	21
31	Improving Students' Diagram Comprehension with Classroom Instruction. Journal of Experimental Education, 2013, 81, 511-537.	1.6	38
32	The effects of achievement goals and self-regulated learning behaviors on reading comprehension in technology-enhanced learning environments. Contemporary Educational Psychology, 2012, 37, 148-161.	1.6	81
33	Instruction and cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 2012, 3, 545-553.	1.4	6
34	Measuring strategy use in context with multiple-choice items. Metacognition and Learning, 2011, 6, 155-177.	1.3	26
35	Cognitive activities in complex science text and diagrams. Contemporary Educational Psychology, 2010, 35, 59-74.	1.6	140
36	Reading comprehension of scientific text: A domain-specific test of the direct and inferential mediation model of reading comprehension Journal of Educational Psychology, 2010, 102, 687-700.	2.1	142

#	Article	IF	CITATIONS
37	Reading Achievement and Science Proficiency: International Comparisons From the Programme on International Student Assessment. Reading Psychology, 2009, 30, 89-118.	0.7	55
38	Locating information within extended hypermedia. Educational Technology Research and Development, 2009, 57, 287-313.	2.0	23
39	Why is externally-facilitated regulated learning more effective than self-regulated learning with hypermedia?. Educational Technology Research and Development, 2008, 56, 45-72.	2.0	269
40	Testing and refining the direct and inferential mediation model of reading comprehension Journal of Educational Psychology, 2007, 99, 311-325.	2.1	410
41	Self-report of reading comprehension strategies: What are we measuring?. Metacognition and Learning, 2007, 1, 229-247.	1.3	81
42	Adaptive Human Scaffolding Facilitates Adolescents' Self-regulated Learning with Hypermedia. Instructional Science, 2005, 33, 381-412.	1.1	190
43	What Do Reading Tutors Do? A Naturalistic Study of More and Less Experienced Tutors in Reading. Discourse Processes, 2005, 40, 83-113.	1.1	36
44	Does Training on Self-Regulated Learning Facilitate Students' Learning With Hypermedia?. Journal of Educational Psychology, 2004, 96, 523-535.	2.1	530
45	Does adaptive scaffolding facilitate students' ability to regulate their learning with hypermedia?. Contemporary Educational Psychology, 2004, 29, 344-370.	1.6	329