

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5496790/publications.pdf Version: 2024-02-01



LE SUM

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Quantum-dot array with a random rough interface encapsulated by atomic layer deposition. Optics<br>Letters, 2022, 47, 166.                                                                  | 1.7 | 16        |
| 2  | Insights into the Mechanism for Vertical Graphene Growth by Plasma-Enhanced Chemical Vapor<br>Deposition. ACS Applied Materials & Interfaces, 2022, 14, 7152-7160.                          | 4.0 | 20        |
| 3  | Hybrid Device of Blue GaN Light-Emitting Diodes and Organic Light-Emitting Diodes with Color<br>Tunability for Smart Lighting Sources. ACS Omega, 2022, 7, 5502-5509.                       | 1.6 | 7         |
| 4  | Tripling Light Conversion Efficiency of μLED Displays by Light Recycling Black Matrix. IEEE Photonics<br>Journal, 2022, 14, 1-7.                                                            | 1.0 | 10        |
| 5  | GaN LEDs with <i>in situ</i> synthesized transparent graphene heat-spreading electrodes fabricated by PECVD and penetration etching. Journal of Materials Chemistry C, 2022, 10, 6794-6804. | 2.7 | 3         |
| 6  | Role of surface microstructure and shape on light extraction efficiency enhancement of GaN micro-LEDs: A numerical simulation study. Displays, 2022, 73, 102172.                            | 2.0 | 8         |
| 7  | Unveiling the charge transfer dynamics steered by built-in electric fields in BiOBr photocatalysts.<br>Nature Communications, 2022, 13, 2230.                                               | 5.8 | 117       |
| 8  | Research on the reliability of Micro LED high-density solder joints under thermal cycling conditions.<br>Journal of Physics: Conference Series, 2022, 2221, 012010.                         | 0.3 | 5         |
| 9  | Perovskite Quantum Dots for Emerging Displays: Recent Progress and Perspectives. Nanomaterials, 2022, 12, 2243.                                                                             | 1.9 | 30        |
| 10 | Aspiration-assisted fabrication of patterned quantum dot films for photo-emissive color conversion.<br>Journal of Materials Science, 2021, 56, 1504-1514.                                   | 1.7 | 3         |
| 11 | Metallization Reliability of GaN-Based High-Voltage Light-Emitting Diodes. IEEE Transactions on Device and Materials Reliability, 2021, 21, 472-478.                                        | 1.5 | 0         |
| 12 | Dynamic phase manipulation of vertical-cavity surface-emitting lasers via on-chip integration of microfluidic channels. Optics Express, 2021, 29, 1481.                                     | 1.7 | 1         |
| 13 | Asymmetric Quantum-Dot Pixelation for Color-Converted White Balance. ACS Photonics, 2021, 8, 2158-2165.                                                                                     | 3.2 | 30        |
| 14 | Quantum Dot Color Conversion Efficiency Enhancement in Micro-Light-Emitting Diodes by<br>Non-Radiative Energy Transfer. IEEE Electron Device Letters, 2021, 42, 1184-1187.                  | 2.2 | 8         |
| 15 | Direct Growth of Transparent Graphene Electrodes on GaN LEDs Using Metal Proximity Catalytic Effect. , 2021, , .                                                                            |     | 0         |
| 16 | Graphene-assisted preparation of large-scale single-crystal Ag(111) nanoparticle arrays for surface-enhanced Raman scattering. Nanotechnology, 2021, 32, 025301.                            | 1.3 | 2         |
| 17 | Graphene coated magnetic nanoparticles facilitate the release of biofuels and oleochemicals from yeast cell factories. Scientific Reports, 2021, 11, 20612.                                 | 1.6 | 1         |
| 18 | In Situ Growth of CVD Graphene Directly on Dielectric Surface toward Application. ACS Applied Electronic Materials, 2020, 2, 238-246.                                                       | 2.0 | 17        |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Morphology regulation of TiO2 thin film by ALD growth temperature and its applications to encapsulation and light extraction. Journal of Materials Science: Materials in Electronics, 2020, 31, 21316-21324.                               | 1.1 | 2         |
| 20 | High Quality Graphene Thin Films Synthesized by Glow Discharge Method in A Chemical Vapor<br>Deposition System Using Solid Carbon Source. Materials, 2020, 13, 2026.                                                                       | 1.3 | 1         |
| 21 | Multiple growth of graphene from a pre-dissolved carbon source. Nanotechnology, 2020, 31, 345601.                                                                                                                                          | 1.3 | 5         |
| 22 | Direct growth of high quality graphene nanowalls on dielectric surfaces by plasma-enhanced chemical vapor deposition for photo detection. Optical Materials Express, 2020, 10, 2909.                                                       | 1.6 | 13        |
| 23 | Facile growth of aluminum oxide thin film by chemical liquid deposition and its application in devices.<br>Nanotechnology Reviews, 2020, 9, 876-885.                                                                                       | 2.6 | 7         |
| 24 | Direct Patterned Growth of PECVD Graphene Transparent Electrodes on GaN LED Epiwafers Using Co<br>as a Sacrificial Catalyst Layer. , 2020, , .                                                                                             |     | 0         |
| 25 | High-responsivity photodetectors made of graphene nanowalls grown on Si. Applied Physics Letters, 2019, 115, .                                                                                                                             | 1.5 | 23        |
| 26 | Transfer-Free Graphene-Like Thin Films on GaN LED Epiwafers Grown by PECVD Using an Ultrathin Pt<br>Catalyst for Transparent Electrode Applications. Materials, 2019, 12, 3533.                                                            | 1.3 | 7         |
| 27 | Reliability of High-Voltage GaN-Based Light-Emitting Diodes. IEEE Transactions on Device and Materials<br>Reliability, 2019, 19, 402-408.                                                                                                  | 1.5 | 7         |
| 28 | Process Optimization of Passive Matrix GaN-Based Micro-LED Arrays for Display Applications. Journal of Electronic Materials, 2019, 48, 5195-5201.                                                                                          | 1.0 | 18        |
| 29 | Metal-Catalyst-Free Growth of Patterned Graphene on SiO <sub>2</sub> Substrates by Annealing<br>Plasma-Induced Cross-Linked Parylene for Optoelectronic Device Applications. ACS Applied Materials<br>& Interfaces, 2019, 11, 14427-14436. | 4.0 | 8         |
| 30 | Monolithic Integrated Device of GaN Micro-LED with Graphene Transparent Electrode and Graphene Active-Matrix Driving Transistor. Materials, 2019, 12, 428.                                                                                 | 1.3 | 17        |
| 31 | The Growth of Graphene on Ni–Cu Alloy Thin Films at a Low Temperature and Its Carbon Diffusion<br>Mechanism. Nanomaterials, 2019, 9, 1633.                                                                                                 | 1.9 | 9         |
| 32 | Chemical vapor deposition of graphene on refractory metals: The attempt of growth at much higher temperature. Synthetic Metals, 2019, 247, 233-239.                                                                                        | 2.1 | 7         |
| 33 | Ultra-compact electrically controlled beam steering chip based on coherently coupled VCSEL array directly integrated with optical phased array. Optics Express, 2019, 27, 13910.                                                           | 1.7 | 9         |
| 34 | Direct Growth of Large-area Graphene by Cross-linked Parylene Graphitization toward Photodetection. , 2019, , .                                                                                                                            |     | 0         |
| 35 | Vertically Aligned Graphene Coating is Bactericidal and Prevents the Formation of Bacterial Biofilms.<br>Advanced Materials Interfaces, 2018, 5, 1701331.                                                                                  | 1.9 | 72        |
| 36 | Two-In-One Method for Graphene Transfer: Simplified Fabrication Process for Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 7289-7295.                                                                        | 4.0 | 29        |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Graphene bolometer with thermoelectric readout and capacitive coupling to an antenna. Applied Physics Letters, 2018, 112, .                                                                                            | 1.5 | 23        |
| 38 | Transfer-free, lithography-free, and micrometer-precision patterning of CVD graphene on SiO2 toward all-carbon electronics. APL Materials, 2018, 6, 026802.                                                            | 2.2 | 14        |
| 39 | Large-Scale Proton-Implant-Defined VCSEL Arrays With Narrow Beamwidth. IEEE Electron Device<br>Letters, 2018, 39, 390-393.                                                                                             | 2.2 | 11        |
| 40 | Dependence of Beam Quality on Optical Intensity Asymmetry in In-Phase Coherently Coupled VCSEL<br>Array. IEEE Journal of Quantum Electronics, 2018, 54, 1-6.                                                           | 1.0 | 10        |
| 41 | Transfer-free, lithography-free and fast growth of patterned CVD graphene directly on insulators by using sacrificial metal catalyst. Nanotechnology, 2018, 29, 365301.                                                | 1.3 | 22        |
| 42 | Analysis of optical coupling behavior in two-dimensional implant-defined coherently coupled vertical-cavity surface-emitting laser arrays. Photonics Research, 2018, 6, 1048.                                          | 3.4 | 7         |
| 43 | Chiral charge pumping in graphene deposited on a magnetic insulator. Physical Review B, 2017, 95, .                                                                                                                    | 1.1 | 22        |
| 44 | Encapsulation of graphene in Parylene. Applied Physics Letters, 2017, 110, .                                                                                                                                           | 1.5 | 18        |
| 45 | New Strategy for Black Phosphorus Crystal Growth through Ternary Clathrate. Crystal Growth and Design, 2017, 17, 6579-6585.                                                                                            | 1.4 | 38        |
| 46 | Thermoelectric effects in graphene at high bias current and under microwave irradiation. Scientific<br>Reports, 2017, 7, 15542.                                                                                        | 1.6 | 4         |
| 47 | Synthesis Methods of Two-Dimensional MoS2: A Brief Review. Crystals, 2017, 7, 198.                                                                                                                                     | 1.0 | 138       |
| 48 | Electrochemical Bubbling Transfer of Graphene Using a Polymer Support with Encapsulated Air Gap as<br>Permeation Stopping Layer. Journal of Nanomaterials, 2016, 2016, 1-7.                                            | 1.5 | 18        |
| 49 | Graphene Transfer: A Mechanism for Highly Efficient Electrochemical Bubbling Delamination of<br>CVD-Grown Graphene from Metal Substrates (Adv. Mater. Interfaces 8/2016). Advanced Materials<br>Interfaces, 2016, 3, . | 1.9 | 1         |
| 50 | A Mechanism for Highly Efficient Electrochemical Bubbling Delamination of CVDâ€Grown Graphene<br>from Metal Substrates. Advanced Materials Interfaces, 2016, 3, 1500492.                                               | 1.9 | 33        |
| 51 | High Light Extraction Efficiency AlGaInP LEDs With Proton Implanted Current Blocking Layer. IEEE<br>Electron Device Letters, 2016, 37, 1303-1306.                                                                      | 2.2 | 2         |
| 52 | Ultrahigh Surfaceâ€Enhanced Raman Scattering of Graphene from Au/Graphene/Au Sandwiched<br>Structures with Subnanometer Gap. Advanced Optical Materials, 2016, 4, 2021-2027.                                           | 3.6 | 38        |
| 53 | ZnO nanorods/graphene/Ni/Au hybrid structures as transparent conductive layer in GaN LED for low<br>work voltage and high light extraction. Solid-State Electronics, 2016, 126, 5-9.                                   | 0.8 | 9         |
| 54 | High responsivity sensing of unfocused laser and white light using graphene photodetectors grown<br>by chemical vapor deposition. Optical Materials Express, 2016, 6, 2158.                                            | 1.6 | 3         |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Rapid chemical vapor deposition of graphene on liquid copper. Synthetic Metals, 2016, 216, 93-97.                                                                                                                     | 2.1 | 18        |
| 56 | A Hybridâ€Type CVD System for Graphene Growth. Chemical Vapor Deposition, 2015, 21, 176-180.                                                                                                                          | 1.4 | 1         |
| 57 | Mechanism of Electrochemical Delamination of Two-Dimensional Materials from Their Native Substrates by Bubbling. Sensors, 2015, 15, 31811-31820.                                                                      | 2.1 | 7         |
| 58 | Pore-free bubbling delamination of chemical vapor deposited graphene from copper foils. Journal of<br>Materials Chemistry C, 2015, 3, 8634-8641.                                                                      | 2.7 | 29        |
| 59 | Graphene GaN-Based Schottky Ultraviolet Detectors. IEEE Transactions on Electron Devices, 2015, 62, 2802-2808.                                                                                                        | 1.6 | 50        |
| 60 | Catalyst-Free, Selective Growth of ZnO Nanowires on SiO <sub>2</sub> by Chemical Vapor Deposition<br>for Transfer-Free Fabrication of UV Photodetectors. ACS Applied Materials & Interfaces, 2015, 7,<br>20264-20271. | 4.0 | 69        |
| 61 | Growth mechanism of graphene on platinum: Surface catalysis and carbon segregation. Applied<br>Physics Letters, 2014, 104, .                                                                                          | 1.5 | 56        |
| 62 | Unusual thermopower of inhomogeneous graphene grown by chemical vapor deposition. Applied<br>Physics Letters, 2014, 104, 021902.                                                                                      | 1.5 | 13        |
| 63 | Influence of graphene synthesizing techniques on the photocatalytic performance of<br>graphene–TiO <sub>2</sub> nanocomposites. Physical Chemistry Chemical Physics, 2013, 15, 15528-15537.                           | 1.3 | 43        |
| 64 | Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu. Applied Physics Letters, 2013, 102, .                                                   | 1.5 | 109       |
| 65 | GaN nanorod light emitting diodes with suspended graphene transparent electrodes grown by rapid<br>chemical vapor deposition. Applied Physics Letters, 2013, 103, 222105.                                             | 1.5 | 14        |
| 66 | Quantum Hall effect in graphene decorated with disordered multilayer patches. Applied Physics<br>Letters, 2013, 103, .                                                                                                | 1.5 | 39        |
| 67 | Metal-Free Graphene as Transparent Electrode for GaN-Based Light-Emitters. Japanese Journal of<br>Applied Physics, 2013, 52, 08JG05.                                                                                  | 0.8 | 2         |
| 68 | Noncatalytic chemical vapor deposition of graphene on high-temperature substrates for transparent electrodes. Applied Physics Letters, 2012, 100, .                                                                   | 1.5 | 66        |
| 69 | Comment on "Mechanism of non-metal catalytic growth of graphene on silicon―[Appl. Phys. Lett. 100,<br>231604 (2012)]. Applied Physics Letters, 2012, 101, 096101.                                                     | 1.5 | 1         |
| 70 | Chemical vapor deposition of nanocrystalline graphene directly on arbitrary high-temperature insulating substrates. , 2012, , .                                                                                       |     | 1         |
| 71 | Low Partial Pressure Chemical Vapor Deposition of Graphene on Copper. IEEE Nanotechnology<br>Magazine, 2012, 11, 255-260.                                                                                             | 1.1 | 57        |
| 72 | Graphene Conductance Uniformity Mapping. Nano Letters, 2012, 12, 5074-5081.                                                                                                                                           | 4.5 | 152       |

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Direct Chemical Vapor Deposition of Large-Area Carbon Thin Films on Gallium Nitride for Transparent<br>Electrodes: A First Attempt. IEEE Transactions on Semiconductor Manufacturing, 2012, 25, 494-501. | 1.4 | 23        |
| 74 | Controllable chemical vapor deposition of large area uniform nanocrystalline graphene directly on silicon dioxide. Journal of Applied Physics, 2012, 111, .                                              | 1.1 | 59        |
| 75 | Graphene p–n–p junctions controlled by local gates made of naturally oxidized thin aluminium films.<br>Carbon, 2012, 50, 1987-1992.                                                                      | 5.4 | 16        |
| 76 | Memristive and Memcapacitive Characteristics of a Au/Ti– \$hbox{HfO}_{2}\$-InP/InGaAs Diode. IEEE<br>Electron Device Letters, 2011, 32, 131-133.                                                         | 2.2 | 30        |
| 77 | Large-area uniform graphene-like thin films grown by chemical vapor deposition directly on silicon<br>nitride. Applied Physics Letters, 2011, 98, .                                                      | 1.5 | 81        |
| 78 | Gate-defined double quantum dot with integrated charge sensors realized in InGaAs/InP by incorporating a high- $\hat{I}^{2}$ dielectric. Applied Physics Letters, 2010, 96, .                            | 1.5 | 9         |
| 79 | Nonlinear electrical properties of Si three-terminal junction devices. Applied Physics Letters, 2010, 97, .                                                                                              | 1.5 | 16        |
| 80 | Gate-defined quantum-dot devices realized in InGaAs/InP by incorporating a HfO2 layer as gate<br>dielectric. Applied Physics Letters, 2009, 94, 042114.                                                  | 1.5 | 18        |
| 81 | Gate-defined quantum devices realized on an InGaAs/InP heterostructure by incorporating a<br>high-κ dielectric material. , 2009, , .                                                                     |     | 0         |
| 82 | Electrical Properties of Self-Assembled Branched InAs Nanowire Junctions. Nano Letters, 2008, 8, 1100-1104.                                                                                              | 4.5 | 56        |
| 83 | A Novel SR Latch Device Realized by Integration of Three-Terminal Ballistic Junctions in InGaAs/InP. IEEE<br>Electron Device Letters, 2008, 29, 540-542.                                                 | 2.2 | 29        |
| 84 | Transport properties of three-terminal ballistic junctions realized by focused ion beam enhanced etching in InGaAs/InP. Applied Physics Letters, 2008, 93, 133110.                                       | 1.5 | 5         |
| 85 | A sequential logic device realized by integration of in-plane gate transistors in InGaAsâ^•InP. Applied Physics Letters, 2008, 92, 012116.                                                               | 1.5 | 6         |
| 86 | SCANNING ELECTRON MICROSCOPY OBSERVATION OF IN-DEVICE InAs/AIAs QUANTUM DOTS BY SELECTIVE ETCHING OF CAPPING LAYERS. Modern Physics Letters B, 2007, 21, 859-866.                                        | 1.0 | 1         |
| 87 | Frequency mixing and phase detection functionalities of three-terminal ballistic junctions.<br>Nanotechnology, 2007, 18, 195205.                                                                         | 1.3 | 30        |
| 88 | Electron Resonant Tunneling Through InAsâ^•GaAs Quantum Dots Embedded in a Schottky Diode with an<br>AlAs Insertion Layer. Journal of the Electrochemical Society, 2006, 153, G703.                      | 1.3 | 4         |
| 89 | Room-Temperature Observation of Electron Resonant Tunneling Through InAsâ^•AlAs Quantum Dots.<br>Electrochemical and Solid-State Letters, 2006, 9, G167.                                                 | 2.2 | 4         |
| 90 | Changing planar thin film growth into self-assembled island formation by adjusting experimental conditions. Thin Solid Films, 2005, 476, 68-72.                                                          | 0.8 | 6         |

| #  | Article                                                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91 | Silica and Alumina Thin Films Grown by Liquid Phase Deposition. Materials Science Forum, 2005, 475-479, 1725-1728.                                                                                                                                                                        | 0.3  | 7         |
| 92 | Extremely low density InAs quantum dots realized in situ on (100) GaAs. Nanotechnology, 2004, 15,<br>1763-1766.                                                                                                                                                                           | 1.3  | 35        |
| 93 | Micro-fabricated Al/sub 0.3/Ga/sub 0.7/As pyramids for potential SPM applications. , 2004, , .                                                                                                                                                                                            |      | 0         |
| 94 | Chemical liquid phase deposition of thin aluminum oxide films. Chinese Journal of Chemistry, 2004, 22, 661-667.                                                                                                                                                                           | 2.6  | 12        |
| 95 | <title>Self-organized LPE growth of&lt;br&gt;Al&lt;formula&gt;&lt;inf&gt;&lt;roman&gt;0.3&lt;/roman&gt;&lt;/inf&gt;&lt;/formula&gt;Ga&lt;formula&gt;&lt;inf&gt;&lt;roman&gt;0.7&lt;/roman&gt;&lt;/inf&gt;&lt;/formula&lt;br&gt;microtips for integrated SNOM sensors</title> ., 2002, , . | a>As | 3         |